These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 17122345)

  • 1. Lateral gene transfer in vitro in the intracellular pathogen Chlamydia trachomatis.
    Demars R; Weinfurter J; Guex E; Lin J; Potucek Y
    J Bacteriol; 2007 Feb; 189(3):991-1003. PubMed ID: 17122345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interstrain gene transfer in Chlamydia trachomatis in vitro: mechanism and significance.
    DeMars R; Weinfurter J
    J Bacteriol; 2008 Mar; 190(5):1605-14. PubMed ID: 18083799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromosomal Recombination Targets in
    Suchland RJ; Carrell SJ; Wang Y; Hybiske K; Kim DB; Dimond ZE; Hefty PS; Rockey DD
    J Bacteriol; 2019 Dec; 201(23):. PubMed ID: 31501285
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro recombinants of antibiotic-resistant Chlamydia trachomatis strains have statistically more breakpoints than clinical recombinants for the same sequenced loci and exhibit selection at unexpected loci.
    Srinivasan T; Bruno WJ; Wan R; Yen A; Duong J; Dean D
    J Bacteriol; 2012 Feb; 194(3):617-26. PubMed ID: 22123249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variation in the mutation frequency determining quinolone resistance in Chlamydia trachomatis serovars L2 and D.
    Rupp J; Solbach W; Gieffers J
    J Antimicrob Chemother; 2008 Jan; 61(1):91-4. PubMed ID: 18033786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular mechanisms of
    Mestrovic T; Ljubin-Sternak S
    Front Biosci (Landmark Ed); 2018 Jan; 23(4):656-670. PubMed ID: 28930567
    [No Abstract]   [Full Text] [Related]  

  • 7. Horizontal transfer of tetracycline resistance among Chlamydia spp. in vitro.
    Suchland RJ; Sandoz KM; Jeffrey BM; Stamm WE; Rockey DD
    Antimicrob Agents Chemother; 2009 Nov; 53(11):4604-11. PubMed ID: 19687238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emergence of resistance to rifampin and rifalazil in Chlamydophila pneumoniae and Chlamydia trachomatis.
    Kutlin A; Kohlhoff S; Roblin P; Hammerschlag MR; Riska P
    Antimicrob Agents Chemother; 2005 Mar; 49(3):903-7. PubMed ID: 15728882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transposon Mutagenesis in Chlamydia trachomatis Identifies CT339 as a ComEC Homolog Important for DNA Uptake and Lateral Gene Transfer.
    LaBrie SD; Dimond ZE; Harrison KS; Baid S; Wickstrum J; Suchland RJ; Hefty PS
    mBio; 2019 Aug; 10(4):. PubMed ID: 31387908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Frequency of spontaneous mutations that confer antibiotic resistance in Chlamydia spp.
    Binet R; Maurelli AT
    Antimicrob Agents Chemother; 2005 Jul; 49(7):2865-73. PubMed ID: 15980362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of trimethoprim- and sulphisoxazole-resistant Chlamydia trachomatis.
    Wang LL; Henson E; McClarty G
    Mol Microbiol; 1994 Oct; 14(2):271-81. PubMed ID: 7530318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rifampin-resistant RNA polymerase mutants of Chlamydia trachomatis remain susceptible to the ansamycin rifalazil.
    Suchland RJ; Bourillon A; Denamur E; Stamm WE; Rothstein DM
    Antimicrob Agents Chemother; 2005 Mar; 49(3):1120-6. PubMed ID: 15728912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of aminoglycoside 3' adenyltransferase as a selection marker for Chlamydia trachomatis intron-mutagenesis and in vivo intron stability.
    Lowden NM; Yeruva L; Johnson CM; Bowlin AK; Fisher DJ
    BMC Res Notes; 2015 Oct; 8():570. PubMed ID: 26471806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Determining antimicrobial resistance to Chlamydia trachomatis and applying present findings in daily practice].
    Sternak SL; Skerk V
    Med Glas (Zenica); 2010 Feb; 7(1):26-31. PubMed ID: 20387721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro activity of ofloxacin against Chlamydia trachomatis.
    Schachter J; Moncada JV
    Am J Med; 1989 Dec; 87(6C):14S-16S. PubMed ID: 2690615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Analysis of point mutations in the ygeD, gyrA and parC genes in fluoroquinolones resistant clinical isolates of Chlamydia trachomatis].
    Misiurina OIu; Shipitsina EV; Finashutina IuP; Lazarev VN; Akopian TA; Savicheva AM; Govorun VM
    Mol Gen Mikrobiol Virusol; 2004; (3):3-7. PubMed ID: 15354934
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro susceptibility of 7.5-kb common plasmid-free Chlamydia trachomatis strains.
    Miyashita N; Matsumoto A; Matsushima T
    Microbiol Immunol; 2000; 44(4):267-9. PubMed ID: 10832970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro analysis of the change in resistance of Chlamydia trachomatis under exposure to sub-MIC levofloxacin for a therapeutic term.
    Takahashi S; Hagiwara T; Shiga S; Takaoki Hirose T; Tsukamoto T
    Chemotherapy; 2000; 46(6):402-7. PubMed ID: 11053906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effective inhibition of rifampicin-resistant Chlamydia trachomatis by the novel DNA-dependent RNA polymerase inhibitor corallopyronin A.
    Shima K; Ledig S; Loeper N; Schiefer A; Pfarr K; Hoerauf A; Graspeuntner S; Rupp J
    Int J Antimicrob Agents; 2018 Oct; 52(4):523-524. PubMed ID: 30092271
    [No Abstract]   [Full Text] [Related]  

  • 20. Effects of azithromycin and rifampin on Chlamydia trachomatis infection in vitro.
    Dreses-Werringloer U; Padubrin I; Zeidler H; Köhler L
    Antimicrob Agents Chemother; 2001 Nov; 45(11):3001-8. PubMed ID: 11600348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.