BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

696 related articles for article (PubMed ID: 17122852)

  • 1. Superconductivity in doped cubic silicon.
    Bustarret E; Marcenat C; Achatz P; Kacmarcik J; Lévy F; Huxley A; Ortéga L; Bourgeois E; Blase X; Débarre D; Boulmer J
    Nature; 2006 Nov; 444(7118):465-8. PubMed ID: 17122852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superconductivity in diamond.
    Ekimov EA; Sidorov VA; Bauer ED; Mel'nik NN; Curro NJ; Thompson JD; Stishov SM
    Nature; 2004 Apr; 428(6982):542-5. PubMed ID: 15057827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Origin of the metallic properties of heavily boron-doped superconducting diamond.
    Yokoya T; Nakamura T; Matsushita T; Muro T; Takano Y; Nagao M; Takenouchi T; Kawarada H; Oguchi T
    Nature; 2005 Dec; 438(7068):647-50. PubMed ID: 16319887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resonance in the electron-doped high-transition-temperature superconductor Pr0.88LaCe0.12CuO4-delta.
    Wilson SD; Dai P; Li S; Chi S; Kang HJ; Lynn JW
    Nature; 2006 Jul; 442(7098):59-62. PubMed ID: 16823448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Local switching of two-dimensional superconductivity using the ferroelectric field effect.
    Takahashi KS; Gabay M; Jaccard D; Shibuya K; Ohnishi T; Lippmaa M; Triscone JM
    Nature; 2006 May; 441(7090):195-8. PubMed ID: 16688171
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal-to-insulator transition and superconductivity in boron-doped diamond.
    Bustarret E; Achatz P; Sacépé B; Chapelier C; Marcenat C; Ortéga L; Klein T
    Philos Trans A Math Phys Eng Sci; 2008 Jan; 366(1863):267-79. PubMed ID: 18024360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spin correlations in the electron-doped high-transition-temperature superconductor Nd2-xCexCuO4+/-delta.
    Motoyama EM; Yu G; Vishik IM; Vajk OP; Mang PK; Greven M
    Nature; 2007 Jan; 445(7124):186-9. PubMed ID: 17215839
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetic order close to superconductivity in the iron-based layered LaO1-xFxFeAs systems.
    de la Cruz C; Huang Q; Lynn JW; Li J; Ratcliff W; Zarestky JL; Mook HA; Chen GF; Luo JL; Wang NL; Dai P
    Nature; 2008 Jun; 453(7197):899-902. PubMed ID: 18509333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of superconductivity in the polyhedral-network compound Ba8Si46.
    Tanigaki K; Shimizu T; Itoh KM; Teraoka J; Moritomo Y; Yamanaka S
    Nat Mater; 2003 Oct; 2(10):653-5. PubMed ID: 12970759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluctuating superconductivity in organic molecular metals close to the Mott transition.
    Nam MS; Ardavan A; Blundell SJ; Schlueter JA
    Nature; 2007 Oct; 449(7162):584-7. PubMed ID: 17914392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure-property correlations in phase-pure B-doped Q-carbon high-temperature superconductor with a record T
    Bhaumik A; Narayan J
    Nanoscale; 2019 May; 11(18):9141-9154. PubMed ID: 31038149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superconductivity in single crystals of the fullerene C70.
    Schön JH; Kloc C; Siegrist T; Steigerwald M; Svensson C; Batlogg B
    Nature; 2001 Oct; 413(6858):831-3. PubMed ID: 11677603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Doping dependent evolution of magnetism and superconductivity in Eu(1-x)K(x)Fe2As2 (x = 0-1) and temperature dependence of the lower critical field H(c1).
    Anupam ; Paulose PL; Ramakrishnan S; Hossain Z
    J Phys Condens Matter; 2011 Nov; 23(45):455702. PubMed ID: 22019495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gate-induced superconductivity in a solution-processed organic polymer film.
    Schön JH; Dodabalapur A; Bao Z; Kloc C; Schenker O; Batlogg B
    Nature; 2001 Mar; 410(6825):189-92. PubMed ID: 11242074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anomalous criticality in the electrical resistivity of La2-xSrxCuO4.
    Cooper RA; Wang Y; Vignolle B; Lipscombe OJ; Hayden SM; Tanabe Y; Adachi T; Koike Y; Nohara M; Takagi H; Proust C; Hussey NE
    Science; 2009 Jan; 323(5914):603-7. PubMed ID: 19074310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superconductivity in heavily boron-doped silicon carbide.
    Kriener M; Muranaka T; Kato J; Ren ZA; Akimitsu J; Maeno Y
    Sci Technol Adv Mater; 2008 Dec; 9(4):044205. PubMed ID: 27878022
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Active doping of B in silicon nanostructures and development of a Si quantum dot solar cell.
    Hong SH; Kim YS; Lee W; Kim YH; Song JY; Jang JS; Park JH; Choi SH; Kim KJ
    Nanotechnology; 2011 Oct; 22(42):425203. PubMed ID: 21941033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phonon-mediated high-T
    Lian CS; Wang JT; Duan W; Chen C
    Sci Rep; 2017 May; 7(1):1464. PubMed ID: 28469256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Temperature Superconductivity in Boron-Doped Q-Carbon.
    Bhaumik A; Sachan R; Narayan J
    ACS Nano; 2017 Jun; 11(6):5351-5357. PubMed ID: 28448115
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-field Overhauser dynamic nuclear polarization in silicon below the metal-insulator transition.
    Dementyev AE; Cory DG; Ramanathan C
    J Chem Phys; 2011 Apr; 134(15):154511. PubMed ID: 21513399
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.