BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 17122916)

  • 21. Effect of wollastonite ceramics and bioactive glass on the formation of a bonelike apatite layer on a cobalt base alloy.
    Cortés DA; Medina A; Escobedo JC; Escobedo S; López MA
    J Biomed Mater Res A; 2004 Aug; 70(2):341-6. PubMed ID: 15227680
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of the bioactive and mechanical behavior of dental ceramic/sol-gel derived bioactive glass mixtures.
    Abbasi Z; Bahrololoum ME; Bagheri R; Shariat MH
    J Mech Behav Biomed Mater; 2016 Feb; 54():115-22. PubMed ID: 26454135
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of processing induced particle alignment on the fracture toughness and fracture behavior of multiphase dental ceramics.
    Gonzaga CC; Okada CY; Cesar PF; Miranda WG; Yoshimura HN
    Dent Mater; 2009 Nov; 25(11):1293-301. PubMed ID: 19570570
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of two bond strength testing methodologies for bilayered all-ceramics.
    Dündar M; Ozcan M; Gökçe B; Cömlekoğlu E; Leite F; Valandro LF
    Dent Mater; 2007 May; 23(5):630-6. PubMed ID: 16844212
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Surface treatments for repair of feldspathic, leucite - and lithium disilicate-reinforced glass ceramics using composite resin.
    Neis CA; Albuquerque NL; Albuquerque Ide S; Gomes EA; Souza-Filho CB; Feitosa VP; Spazzin AO; Bacchi A
    Braz Dent J; 2015; 26(2):152-5. PubMed ID: 25831106
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthesis, characterization and bioactivity of a calcium-phosphate glass-ceramics obtained by the sol-gel processing method.
    Jmal N; Bouaziz J
    Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():279-288. PubMed ID: 27987709
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sol-gel synthesis of lithium doped mesoporous bioactive glass nanoparticles and tricalcium silicate for restorative dentistry: Comparative investigation of physico-chemical structure, antibacterial susceptibility and biocompatibility.
    Simila HO; Boccaccini AR
    Front Bioeng Biotechnol; 2023; 11():1065597. PubMed ID: 37077228
    [No Abstract]   [Full Text] [Related]  

  • 28. Influence of surface treatment of contaminated lithium disilicate and leucite glass ceramics on surface free energy and bond strength of universal adhesives.
    Yoshida F; Tsujimoto A; Ishii R; Nojiri K; Takamizawa T; Miyazaki M; Latta MA
    Dent Mater J; 2015; 34(6):855-62. PubMed ID: 26632235
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Machinability of lithium disilicate glass ceramic in in vitro dental diamond bur adjusting process.
    Song XF; Ren HT; Yin L
    J Mech Behav Biomed Mater; 2016 Jan; 53():78-92. PubMed ID: 26318569
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Apatite formation on the surface of Ceravital-type glass-ceramic in the body.
    Ohtsuki C; Kushitani H; Kokubo T; Kotani S; Yamamuro T
    J Biomed Mater Res; 1991 Nov; 25(11):1363-70. PubMed ID: 1797808
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of the interactions between collagen and the surface of a bioactive glass during in vitro test.
    Oréfice R; Hench L; Brennan A
    J Biomed Mater Res A; 2009 Jul; 90(1):114-20. PubMed ID: 18491395
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of ceramic thickness and ceramic materials on fracture resistance of posterior partial coverage restorations.
    Bakeman EM; Rego N; Chaiyabutr Y; Kois JC
    Oper Dent; 2015; 40(2):211-7. PubMed ID: 25330270
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reduced wear of enamel with novel fine and nano-scale leucite glass-ceramics.
    Theocharopoulos A; Chen X; Hill R; Cattell MJ
    J Dent; 2013 Jun; 41(6):561-8. PubMed ID: 23438418
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of core material, veneering porcelain, and fabrication technique on the biaxial flexural strength and weibull analysis of selected dental ceramics.
    Lin WS; Ercoli C; Feng C; Morton D
    J Prosthodont; 2012 Jul; 21(5):353-62. PubMed ID: 22462639
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of crystallization on strength and color of castable glass-ceramics containing two crystals.
    Tada Y; Kawano F; Kon M; Matsumoto N; Asaoka K
    Biomed Mater Eng; 1995; 5(4):233-43. PubMed ID: 8785508
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Compositional and microstructural design of highly bioactive P2O5-Na2O-CaO-SiO2 glass-ceramics.
    Peitl O; Zanotto ED; Serbena FC; Hench LL
    Acta Biomater; 2012 Jan; 8(1):321-32. PubMed ID: 22032913
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Glass-Ceramics in Dentistry: A Review.
    Fu L; Engqvist H; Xia W
    Materials (Basel); 2020 Feb; 13(5):. PubMed ID: 32110874
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Effects of simulated body fluid flowing rate on bone-like apatite formation on porous calcium phosphate ceramics].
    Duan YR; Liu KW; Chen JY; Zhang XD
    Space Med Med Eng (Beijing); 2002 Jun; 15(3):203-7. PubMed ID: 12224554
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ca,P-rich layer formed on high-strength bioactive glass-ceramic A-W.
    Kokubo T; Ito S; Huang ZT; Hayashi T; Sakka S; Kitsugi T; Yamamuro T
    J Biomed Mater Res; 1990 Mar; 24(3):331-43. PubMed ID: 2156869
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of ZrO(2) additions on the crystallization, mechanical and biological properties of MgO-CaO-SiO(2)-P(2)O(5)-CaF(2) bioactive glass-ceramics.
    Li HC; Wang DG; Meng XG; Chen CZ
    Colloids Surf B Biointerfaces; 2014 Jun; 118():226-33. PubMed ID: 24780435
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.