BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 17123088)

  • 1. Postactivation inhibition of spontaneously active neurosecretory neurons in the medicinal leech.
    Gocht D; Heinrich R
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2007 Mar; 193(3):347-61. PubMed ID: 17123088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activity-dependent suppression of spontaneous spike generation in the Retzius neurons of the leech Hirudo medicinalis L.
    Rose T; Gras H; Hörner M
    Invert Neurosci; 2006 Dec; 6(4):169-76. PubMed ID: 17075704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ionic mechanism of ouabain-induced swelling of leech Retzius neurons.
    Dierkes PW; Wüsten HJ; Klees G; Müller A; Hochstrate P
    Pflugers Arch; 2006 Apr; 452(1):25-35. PubMed ID: 16341876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of Na+/K+ ATPase potentiates synaptic transmission in tactile sensory neurons of the leech.
    Scuri R; Lombardo P; Cataldo E; Ristori C; Brunelli M
    Eur J Neurosci; 2007 Jan; 25(1):159-67. PubMed ID: 17241277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The ouabain-induced [Ca2+]i increase in leech Retzius neurones is mediated by voltage-dependent Ca2+ channels.
    Hochstrate P; Schlue WR
    Brain Res; 2001 Feb; 892(2):248-54. PubMed ID: 11172771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sodium-dependent potassium channels in leech P neurons.
    Klees G; Hochstrate P; Dierkes PW
    J Membr Biol; 2005 Nov; 208(1):27-38. PubMed ID: 16596444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activity-dependent increase of the AHP amplitude in T sensory neurons of the leech.
    Scuri R; Mozzachiodi R; Brunelli M
    J Neurophysiol; 2002 Nov; 88(5):2490-500. PubMed ID: 12424288
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of postinhibitory rebound and its modulation by serotonin in excitatory swim motor neurons of the medicinal leech.
    Angstadt JD; Grassmann JL; Theriault KM; Levasseur SM
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 Aug; 191(8):715-32. PubMed ID: 15838650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of a synaptiform transmission between a neuron and a glial cell in the leech central nervous system.
    Britz FC; Lohr C; Schmidt J; Deitmer JW
    Glia; 2002 May; 38(3):215-27. PubMed ID: 11968059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role for calcium signaling and arachidonic acid metabolites in the activity-dependent increase of AHP amplitude in leech T sensory neurons.
    Scuri R; Mozzachiodi R; Brunelli M
    J Neurophysiol; 2005 Aug; 94(2):1066-73. PubMed ID: 15872070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Myomodulin increases Ih and inhibits the NA/K pump to modulate bursting in leech heart interneurons.
    Tobin AE; Calabrese RL
    J Neurophysiol; 2005 Dec; 94(6):3938-50. PubMed ID: 16093342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mg2+-malate co-transport, a mechanism for Na+-independent Mg2+ transport in neurons of the leech Hirudo medicinalis.
    Günzel D; Hintz K; Durry S; Schlue WR
    J Neurophysiol; 2005 Jul; 94(1):441-53. PubMed ID: 15788520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Convergence of mechanosensory inputs onto neuromodulatory serotonergic neurons in the leech.
    Velázquez-Ulloa N; Blackshaw SE; Szczupak L; Trueta C; García E; De-Miguel FF
    J Neurobiol; 2003 Mar; 54(4):604-17. PubMed ID: 12555272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-time measurements of synaptic autoinhibition produced by serotonin release in cultured leech neurons.
    Cercós MG; De-Miguel FF; Trueta C
    J Neurophysiol; 2009 Aug; 102(2):1075-85. PubMed ID: 19535486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoinactivation of the giant neuropil glial cells in the leech Hirudo medicinalis: effects on neuronal activity and synaptic transmission.
    Schmidt J; Deitmer JW
    J Neurophysiol; 1996 Nov; 76(5):2861-71. PubMed ID: 8930239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 5-Hydroxytryptamine-mediated increase in glutamate uptake by the leech giant glial cell.
    Hirth IC; Deitmer JW
    Glia; 2006 Dec; 54(8):786-94. PubMed ID: 16958089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence that tolerance and dependence of guinea pig myenteric neurons to opioids is a function of altered electrogenic sodium-potassium pumping.
    Kong JQ; Leedham JA; Taylor DA; Fleming WW
    J Pharmacol Exp Ther; 1997 Feb; 280(2):593-9. PubMed ID: 9023268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of transition metal ions on spontaneous electrical activity and chemical synaptic transmission of neurons in the medicinal leech.
    Angstadt JD; Choo JJ; Saran AM
    J Comp Physiol A; 1998 Mar; 182(3):389-401. PubMed ID: 9528110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A role for the sodium, potassium adenosine triphosphatase (Na+,K+ ATPase) enzyme in degranulation of rat basophilic leukaemia cells.
    Gentile DA; Skoner DP
    Clin Exp Allergy; 1996 Dec; 26(12):1449-60. PubMed ID: 9027446
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of neuronal hyperexcitability caused by partial inhibition of Na+-K+-ATPases in the rat CA1 hippocampal region.
    Vaillend C; Mason SE; Cuttle MF; Alger BE
    J Neurophysiol; 2002 Dec; 88(6):2963-78. PubMed ID: 12466422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.