These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 17123088)

  • 61. Aminergic neuron systems of lobsters: morphology and electrophysiology of octopamine-containing neurosecretory cells.
    Heinrich R; Bräunig P; Walter I; Schneider H; Kravitz EA
    J Comp Physiol A; 2000; 186(7-8):617-29. PubMed ID: 11016779
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Caulerpenyne, a toxin from the seaweed Caulerpa taxifolia, depresses afterhyperpolarization in invertebrate neurons.
    Mozzachiodi R; Scuri R; Roberto M; Brunelli M
    Neuroscience; 2001; 107(3):519-26. PubMed ID: 11719006
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A new cellular type in invertebrates: first evidence of telocytes in leech Hirudo medicinalis.
    Pulze L; Baranzini N; Girardello R; Grimaldi A; Ibba-Manneschi L; Ottaviani E; Reguzzoni M; Tettamanti G; de Eguileor M
    Sci Rep; 2017 Oct; 7(1):13580. PubMed ID: 29051571
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The stomatogastric nervous system of the medicinal leech: its anatomy, physiology and associated aminergic neurons.
    Mesce KA; Alania M; Gaudry Q; Puhl JG
    J Exp Biol; 2018 Mar; 221(Pt 7):. PubMed ID: 29444844
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Octopamine and Leydig cell stimulation depress the afterhyperpolarization in touch sensory neurons of the leech.
    Catarsi S; Scuri R; Brunelli M
    Neuroscience; 1995 Jun; 66(3):751-9. PubMed ID: 7644035
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Hirudo medicinalis: a platform for investigating genes in neural repair.
    Wang WZ; Emes RD; Christoffers K; Verrall J; Blackshaw SE
    Cell Mol Neurobiol; 2005 Mar; 25(2):427-40. PubMed ID: 16047550
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Analysis of the effects of antibodies to gangliosides on the electrical activity of Retzius neurons in the leech and on the functional activity of influx sodium current channels.
    Sergeeva SS; Zapryanova E; Sotnikov OS; Deleva D; Fil'chev A
    Neurosci Behav Physiol; 2004 Jul; 34(6):579-85. PubMed ID: 15368904
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Ingestive sensory inputs excite serotonin effector neurones and promote serotonin depletion from the leech central nervous system and periphery.
    Groome JR; Vaughan DK; Lent CM
    J Exp Biol; 1995 Jun; 198(Pt 6):1233-42. PubMed ID: 7782716
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Electrical activity of the sinus gland of the terrestrial isopod, Oniscus asellus: characteristics of identified potentials recorded extracellularly from neurosecretory terminals.
    Chiang RG; Steel CG
    Brain Res; 1986 Jul; 377(1):83-95. PubMed ID: 3730858
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Mutual coupling among insect neurosecretory cells with an ultradian firing rhythm.
    Ichikawa T
    Neurosci Lett; 2001 Feb; 299(1-2):73-6. PubMed ID: 11166941
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Architecture of gastropod central nervous tissues in relation to ionic movements.
    Sattelle DB; Lane NJ
    Tissue Cell; 1972; 4(2):253-70. PubMed ID: 4670869
    [No Abstract]   [Full Text] [Related]  

  • 72. Differentially expressed genes in Hirudo medicinalis ganglia after acetyl-L-carnitine treatment.
    Federighi G; Macchi M; Bernardi R; Scuri R; Brunelli M; Durante M; Traina G
    PLoS One; 2013; 8(1):e53605. PubMed ID: 23308261
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Neurotoxic effects of caulerpenyne.
    Brunelli M; Garcia-Gil M; Mozzachiodi R; Roberto M; Scuri R; Traina G; Zaccardi ML
    Prog Neuropsychopharmacol Biol Psychiatry; 2000 Aug; 24(6):939-54. PubMed ID: 11041536
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Bursting properties of caudal neurosecretory cells in the flounder Platichthys flesus, in vitro.
    Brierley MJ; Ashworth AJ; Banks JR; Balment RJ; McCrohan CR
    J Exp Biol; 2001 Aug; 204(Pt 15):2733-9. PubMed ID: 11533123
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A sensory system initiating swimming activity in the medicinal leech.
    Brodfuehrer PD; Friesen WO
    J Exp Biol; 1984 Jan; 108():341-55. PubMed ID: 20968107
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Repetitive treatment with serotonin modifies protein synthesis and protein phosphorylation in the central nervous system of Hirudo medicinalis.
    Garcia-Gil M; Bottai D; Romano A; Fineschi L; Bini L; Pallini V; Brunelli M
    Electrophoresis; 1995 Jul; 16(7):1251-4. PubMed ID: 7498173
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Physiology of water motion detection in the medicinal leech.
    Friesen WO
    J Exp Biol; 1981 Jun; 92():255-75. PubMed ID: 20968106
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Serotonin modulates muscle function in the medicinal leech Hirudo verbana.
    Gerry SP; Ellerby DJ
    Biol Lett; 2011 Dec; 7(6):885-8. PubMed ID: 21561963
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Synchronous firing dynamics in a heterogeneous neurosecretory-cell population in an insect.
    Ichikawa T
    Brain Res; 2002 Mar; 929(2):156-65. PubMed ID: 11864620
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Responses to mechanically and visually cued water waves in the nervous system of the medicinal leech.
    Lehmkuhl AM; Muthusamy A; Wagenaar DA
    J Exp Biol; 2018 Feb; 221(Pt 4):. PubMed ID: 29472489
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.