These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
383 related articles for article (PubMed ID: 17123640)
1. Adenosine A2A receptor blockade before striatal excitotoxic lesions prevents long term behavioural disturbances in the quinolinic rat model of Huntington's disease. Scattoni ML; Valanzano A; Pezzola A; March ZD; Fusco FR; Popoli P; Calamandrei G Behav Brain Res; 2007 Jan; 176(2):216-21. PubMed ID: 17123640 [TBL] [Abstract][Full Text] [Related]
2. Progressive behavioural changes in the spatial open-field in the quinolinic acid rat model of Huntington's disease. Scattoni ML; Valanzano A; Popoli P; Pezzola A; Reggio R; Calamandrei G Behav Brain Res; 2004 Jul; 152(2):375-83. PubMed ID: 15196806 [TBL] [Abstract][Full Text] [Related]
3. Blockade of striatal adenosine A2A receptor reduces, through a presynaptic mechanism, quinolinic acid-induced excitotoxicity: possible relevance to neuroprotective interventions in neurodegenerative diseases of the striatum. Popoli P; Pintor A; Domenici MR; Frank C; Tebano MT; Pèzzola A; Scarchilli L; Quarta D; Reggio R; Malchiodi-Albedi F; Falchi M; Massotti M J Neurosci; 2002 Mar; 22(5):1967-75. PubMed ID: 11880527 [TBL] [Abstract][Full Text] [Related]
4. Behavioral and electrophysiological effects of the adenosine A2A receptor antagonist SCH 58261 in R6/2 Huntington's disease mice. Domenici MR; Scattoni ML; Martire A; Lastoria G; Potenza RL; Borioni A; Venerosi A; Calamandrei G; Popoli P Neurobiol Dis; 2007 Nov; 28(2):197-205. PubMed ID: 17720507 [TBL] [Abstract][Full Text] [Related]
5. Effects of the adenosine A2A receptor antagonist SCH 58621 on cyclooxygenase-2 expression, glial activation, and brain-derived neurotrophic factor availability in a rat model of striatal neurodegeneration. Minghetti L; Greco A; Potenza RL; Pezzola A; Blum D; Bantubungi K; Popoli P J Neuropathol Exp Neurol; 2007 May; 66(5):363-71. PubMed ID: 17483693 [TBL] [Abstract][Full Text] [Related]
6. Amelioration of behavioral deficits in a rat model of Huntington's disease by an excitotoxic lesion to the globus pallidus. Ayalon L; Doron R; Weiner I; Joel D Exp Neurol; 2004 Mar; 186(1):46-58. PubMed ID: 14980809 [TBL] [Abstract][Full Text] [Related]
7. Excitotoxic brain damage involves early peroxynitrite formation in a model of Huntington's disease in rats: protective role of iron porphyrinate 5,10,15,20-tetrakis (4-sulfonatophenyl)porphyrinate iron (III). Pérez-De La Cruz V; González-Cortés C; Galván-Arzate S; Medina-Campos ON; Pérez-Severiano F; Ali SF; Pedraza-Chaverrí J; Santamaría A Neuroscience; 2005; 135(2):463-74. PubMed ID: 16111817 [TBL] [Abstract][Full Text] [Related]
8. Quinolinic acid released from polymeric brain implants causes behavioral and neuroanatomical alterations in a rodent model of Huntington's disease. Haik KL; Shear DA; Schroeder U; Sabel BA; Dunbar GL Exp Neurol; 2000 Jun; 163(2):430-9. PubMed ID: 10833318 [TBL] [Abstract][Full Text] [Related]
9. [Behavior characterization of a model of Huntington's disease in rats, induced by quinolinic acid]. Francis L; Cruz R; Antúnez I; Rosillo JC Rev Neurol; 2000 Jun 1-15; 30(11):1016-21. PubMed ID: 10904945 [TBL] [Abstract][Full Text] [Related]
10. The IGF-I amino-terminal tripeptide glycine-proline-glutamate (GPE) is neuroprotective to striatum in the quinolinic acid lesion animal model of Huntington's disease. Alexi T; Hughes PE; van Roon-Mom WM; Faull RL; Williams CE; Clark RG; Gluckman PD Exp Neurol; 1999 Sep; 159(1):84-97. PubMed ID: 10486177 [TBL] [Abstract][Full Text] [Related]
11. Adenosine A2A receptor blockade differentially influences excitotoxic mechanisms at pre- and postsynaptic sites in the rat striatum. Tebano MT; Pintor A; Frank C; Domenici MR; Martire A; Pepponi R; Potenza RL; Grieco R; Popoli P J Neurosci Res; 2004 Jul; 77(1):100-7. PubMed ID: 15197743 [TBL] [Abstract][Full Text] [Related]
12. Abnormalities of somatosensory evoked potentials in the quinolinic acid model of Huntington's disease: evidence that basal ganglia modulate sensory cortical input. Schwarz M; Block F; Töpper R; Sontag KH; Noth J Ann Neurol; 1992 Sep; 32(3):358-64. PubMed ID: 1329611 [TBL] [Abstract][Full Text] [Related]
13. Deficits induced by quinolinic acid lesion to the striatum in a position discrimination and reversal task are ameliorated by permanent and temporary lesion to the globus pallidus: a potential novel treatment in a rat model of Huntington's disease. Joel D; Ayalon L; Tarrasch R; Weiner I Mov Disord; 2003 Dec; 18(12):1499-507. PubMed ID: 14673887 [TBL] [Abstract][Full Text] [Related]
14. Short-term lithium treatment promotes neuronal survival and proliferation in rat striatum infused with quinolinic acid, an excitotoxic model of Huntington's disease. Senatorov VV; Ren M; Kanai H; Wei H; Chuang DM Mol Psychiatry; 2004 Apr; 9(4):371-85. PubMed ID: 14702090 [TBL] [Abstract][Full Text] [Related]
15. Behavioural and neurochemical characterization of the adenosine A2A receptor antagonist ST1535. Galluzzo M; Pintor A; Pèzzola A; Grieco R; Borsini F; Popoli P Eur J Pharmacol; 2008 Jan; 579(1-3):149-52. PubMed ID: 18036583 [TBL] [Abstract][Full Text] [Related]
16. Neurogenesis in the striatum of the quinolinic acid lesion model of Huntington's disease. Tattersfield AS; Croon RJ; Liu YW; Kells AP; Faull RL; Connor B Neuroscience; 2004; 127(2):319-32. PubMed ID: 15262322 [TBL] [Abstract][Full Text] [Related]
17. Chronic administration of quinolinic acid in the rat striatum causes spatial learning deficits in a radial arm water maze task. Shear DA; Dong J; Haik-Creguer KL; Bazzett TJ; Albin RL; Dunbar GL Exp Neurol; 1998 Apr; 150(2):305-11. PubMed ID: 9527900 [TBL] [Abstract][Full Text] [Related]
18. Behavioral and anatomical effects of quinolinic acid in the striatum of the hemiparkinsonian rat. Olds ME; Jacques DB; Kopyov O Synapse; 2005 Jan; 55(1):26-36. PubMed ID: 15499610 [TBL] [Abstract][Full Text] [Related]
19. Neuroprotective effect of MK-801 against intra-striatal quinolinic acid induced behavioral, oxidative stress and cellular alterations in rats. Kalonia H; Kumar P; Nehru B; Kumar A Indian J Exp Biol; 2009 Nov; 47(11):880-92. PubMed ID: 20099461 [TBL] [Abstract][Full Text] [Related]
20. Probucol modulates oxidative stress and excitotoxicity in Huntington's disease models in vitro. Colle D; Hartwig JM; Soares FA; Farina M Brain Res Bull; 2012 Mar; 87(4-5):397-405. PubMed ID: 22245028 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]