These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
71 related articles for article (PubMed ID: 17123811)
1. Phosphonoacetic acid utilization by fungal isolates: occurrence and properties of a phosphonoacetate hydrolase in some penicillia. Forlani G; Klimek-Ochab M; Jaworski J; Lejczak B; Picco AM Mycol Res; 2006 Dec; 110(Pt 12):1455-63. PubMed ID: 17123811 [TBL] [Abstract][Full Text] [Related]
2. A metal-independent hydrolase from a Penicillium oxalicum strain able to use phosphonoacetic acid as the only phosphorus source. Klimek-Ochab M; Lejczak B; Forlani G FEMS Microbiol Lett; 2003 May; 222(2):205-9. PubMed ID: 12770709 [TBL] [Abstract][Full Text] [Related]
3. Phosphonoacetate hydrolase from Penicillium oxalicum: purification and properties, phosphate starvation-independent expression, and partial sequencing. Klimek-Ochab M; Raucci G; Lejczak B; Forlani G Res Microbiol; 2006 Mar; 157(2):125-35. PubMed ID: 16129582 [TBL] [Abstract][Full Text] [Related]
4. A role for carbon catabolite repression in the metabolism of phosphonoacetate by Agromyces fucosus Vs2. O'Loughlin SN; Graham RL; McMullan G; Ternan NG FEMS Microbiol Lett; 2006 Aug; 261(1):133-40. PubMed ID: 16842370 [TBL] [Abstract][Full Text] [Related]
5. RT-TGGE as a guide for the successful isolation of phosphonoacetate degrading bacteria. Panas P; McMullan G; Dooley JS J Appl Microbiol; 2007 Jul; 103(1):237-44. PubMed ID: 17584470 [TBL] [Abstract][Full Text] [Related]
6. Potential for phosphonoacetate utilization by marine bacteria in temperate coastal waters. Gilbert JA; Thomas S; Cooley NA; Kulakova A; Field D; Booth T; McGrath JW; Quinn JP; Joint I Environ Microbiol; 2009 Jan; 11(1):111-25. PubMed ID: 18783384 [TBL] [Abstract][Full Text] [Related]
7. Detection of phosphonoacetate degradation and phnA genes in soil bacteria from distinct geographical origins suggest its possible biogenic origin. Panas P; Ternan NG; Dooley JS; McMullan G Environ Microbiol; 2006 May; 8(5):939-45. PubMed ID: 16623750 [TBL] [Abstract][Full Text] [Related]
8. Phosphate-independent utilization of phosphonoacetic acid as sole phosphorus source by a psychrophilic strain of Geomyces pannorum P15. Klimek-Ochab M Folia Microbiol (Praha); 2014 Sep; 59(5):375-80. PubMed ID: 24570323 [TBL] [Abstract][Full Text] [Related]
9. The construction of a whole-cell biosensor for phosphonoacetate, based on the LysR-like transcriptional regulator PhnR from Pseudomonas fluorescens 23F. Kulakova AN; Kulakov LA; McGrath JW; Quinn JP Microb Biotechnol; 2009 Mar; 2(2):234-40. PubMed ID: 21261917 [TBL] [Abstract][Full Text] [Related]
10. Capability of Penicillium oxalicum y2 to release phosphate from different insoluble phosphorus sources and soil. Wang J; Zhao YG; Maqbool F Folia Microbiol (Praha); 2021 Feb; 66(1):69-77. PubMed ID: 32939738 [TBL] [Abstract][Full Text] [Related]
11. Detection of a novel carbon-phosphorus bond cleavage activity in cell-free extracts of an environmental Pseudomonas fluorescens isolate. McMullan G; Quinn JP Biochem Biophys Res Commun; 1992 Apr; 184(2):1022-7. PubMed ID: 1575721 [TBL] [Abstract][Full Text] [Related]
12. The purification and properties of phosphonoacetate hydrolase, a novel carbon-phosphorus bond-cleavage enzyme from Pseudomonas fluorescens 23F. McGrath JW; Wisdom GB; McMullan G; Larkin MJ; Quinn JP Eur J Biochem; 1995 Nov; 234(1):225-30. PubMed ID: 8529644 [TBL] [Abstract][Full Text] [Related]
13. Structural and functional analysis of the phosphonoacetate hydrolase (phnA) gene region in Pseudomonas fluorescens 23F. Kulakova AN; Kulakov LA; Akulenko NV; Ksenzenko VN; Hamilton JT; Quinn JP J Bacteriol; 2001 Jun; 183(11):3268-75. PubMed ID: 11344133 [TBL] [Abstract][Full Text] [Related]
14. In vitro characterization of a phosphate starvation-independent carbon-phosphorus bond cleavage activity in Pseudomonas fluorescens 23F. McMullan G; Quinn JP J Bacteriol; 1994 Jan; 176(2):320-4. PubMed ID: 8288524 [TBL] [Abstract][Full Text] [Related]
15. Fungal extracellular phosphatases: their role in P cycling under different pH and P sources availability. Della Mónica IF; Godoy MS; Godeas AM; Scervino JM J Appl Microbiol; 2018 Jan; 124(1):155-165. PubMed ID: 29072359 [TBL] [Abstract][Full Text] [Related]
16. Enzymatic degradation of monocrotophos by extracellular fungal OP hydrolases. Jain R; Garg V Appl Biochem Biotechnol; 2013 Nov; 171(6):1473-86. PubMed ID: 23963716 [TBL] [Abstract][Full Text] [Related]
17. Effect of an organophosphate pesticide, monocrotophos, on phosphate-solubilizing efficiency of soil fungal isolates. Jain R; Garg V; Saxena J Appl Biochem Biotechnol; 2015 Jan; 175(2):813-24. PubMed ID: 25344433 [TBL] [Abstract][Full Text] [Related]
18. Phosphonoacetate biosynthesis: in vitro detection of a novel NADP(+)-dependent phosphonoacetaldehyde-oxidizing activity in cell-extracts of the marine Roseovarius nubinhibens ISM. Cooley NA; Kulakova AN; Villarreal-Chiu JF; Gilbert JA; McGrath JW; Quinn JP Mikrobiologiia; 2011; 80(3):329-34. PubMed ID: 21861368 [TBL] [Abstract][Full Text] [Related]
19. Structural and mechanistic insights into C-P bond hydrolysis by phosphonoacetate hydrolase. Agarwal V; Borisova SA; Metcalf WW; van der Donk WA; Nair SK Chem Biol; 2011 Oct; 18(10):1230-40. PubMed ID: 22035792 [TBL] [Abstract][Full Text] [Related]
20. [Effect of phosphate and glucose on the growth kinetics and phsophohydrolase activity of Penicillium brevi-compactum]. Ezhov VA Mikrobiologiia; 1978; 47(6):997-1003. PubMed ID: 218083 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]