BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 1712397)

  • 1. Characterization and sequence of the Escherichia coli stress-induced psp operon.
    Brissette JL; Weiner L; Ripmaster TL; Model P
    J Mol Biol; 1991 Jul; 220(1):35-48. PubMed ID: 1712397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stress-induced expression of the Escherichia coli phage shock protein operon is dependent on sigma 54 and modulated by positive and negative feedback mechanisms.
    Weiner L; Brissette JL; Model P
    Genes Dev; 1991 Oct; 5(10):1912-23. PubMed ID: 1717346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification, nucleotide sequence, and characterization of PspF, the transcriptional activator of the Escherichia coli stress-induced psp operon.
    Jovanovic G; Weiner L; Model P
    J Bacteriol; 1996 Apr; 178(7):1936-45. PubMed ID: 8606168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of a new member of the phage shock protein response in Escherichia coli, the phage shock protein G (PspG).
    Lloyd LJ; Jones SE; Jovanovic G; Gyaneshwar P; Rolfe MD; Thompson A; Hinton JC; Buck M
    J Biol Chem; 2004 Dec; 279(53):55707-14. PubMed ID: 15485810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo and in vitro activities of the Escherichia coli sigma54 transcription activator, PspF, and its DNA-binding mutant, PspFDeltaHTH.
    Jovanovic G; Rakonjac J; Model P
    J Mol Biol; 1999 Jan; 285(2):469-83. PubMed ID: 9878422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of the proteins and cis-acting elements regulating the stress-induced phage shock protein operon.
    Weiner L; Brissette JL; Ramani N; Model P
    Nucleic Acids Res; 1995 Jun; 23(11):2030-6. PubMed ID: 7596833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple promoters control expression of the Yersinia enterocolitica phage-shock-protein A (pspA) operon.
    Maxson ME; Darwin AJ
    Microbiology (Reading); 2006 Apr; 152(Pt 4):1001-1010. PubMed ID: 16549664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phage shock protein, a stress protein of Escherichia coli.
    Brissette JL; Russel M; Weiner L; Model P
    Proc Natl Acad Sci U S A; 1990 Feb; 87(3):862-6. PubMed ID: 2105503
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PspF and IHF bind co-operatively in the psp promoter-regulatory region of Escherichia coli.
    Jovanovic G; Model P
    Mol Microbiol; 1997 Aug; 25(3):473-81. PubMed ID: 9302010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions between phage-shock proteins in Escherichia coli.
    Adams H; Teertstra W; Demmers J; Boesten R; Tommassen J
    J Bacteriol; 2003 Feb; 185(4):1174-80. PubMed ID: 12562786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of ClpB, an analog of the ATP-dependent protease regulatory subunit in Escherichia coli, is controlled by a heat shock sigma factor (sigma 32).
    Kitagawa M; Wada C; Yoshioka S; Yura T
    J Bacteriol; 1991 Jul; 173(14):4247-53. PubMed ID: 1906060
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Involvement of stress protein PspA (phage shock protein A) of Escherichia coli in maintenance of the protonmotive force under stress conditions.
    Kleerebezem M; Crielaard W; Tommassen J
    EMBO J; 1996 Jan; 15(1):162-71. PubMed ID: 8598199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression and control of an operon from an intracellular symbiont which is homologous to the groE operon.
    Sato S; Ishikawa H
    J Bacteriol; 1997 Apr; 179(7):2300-4. PubMed ID: 9079916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation, identification, and transcriptional specificity of the heat shock sigma factor sigma32 from Caulobacter crescentus.
    Wu J; Newton A
    J Bacteriol; 1996 Apr; 178(7):2094-101. PubMed ID: 8606189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular determinants for PspA-mediated repression of the AAA transcriptional activator PspF.
    Elderkin S; Bordes P; Jones S; Rappas M; Buck M
    J Bacteriol; 2005 May; 187(9):3238-48. PubMed ID: 15838051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Escherichia coli heat shock gene htpY: mutational analysis, cloning, sequencing, and transcriptional regulation.
    Missiakas D; Georgopoulos C; Raina S
    J Bacteriol; 1993 May; 175(9):2613-24. PubMed ID: 8478327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of a Caulobacter crescentus operon encoding hrcA, involved in negatively regulating heat-inducible transcription, and the chaperone gene grpE.
    Roberts RC; Toochinda C; Avedissian M; Baldini RL; Gomes SL; Shapiro L
    J Bacteriol; 1996 Apr; 178(7):1829-41. PubMed ID: 8606155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of an Escherichia coli stress-response operon in stationary-phase survival.
    Weiner L; Model P
    Proc Natl Acad Sci U S A; 1994 Mar; 91(6):2191-5. PubMed ID: 8134371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cloning, sequencing, and expression of dnaK-operon proteins from the thermophilic bacterium Thermus thermophilus.
    Osipiuk J; Joachimiak A
    Biochim Biophys Acta; 1997 Sep; 1353(3):253-65. PubMed ID: 9349721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cloning and sequence analysis of the dnaK gene region of Lactococcus lactis subsp. lactis.
    Eaton T; Shearman C; Gasson M
    J Gen Microbiol; 1993 Dec; 139(12):3253-64. PubMed ID: 8126443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.