BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 17124122)

  • 1. Hypergravity as a crystallization tool.
    Nanev CN; Dimitrov I; Hodjaoglu F
    Ann N Y Acad Sci; 2006 Sep; 1077():172-83. PubMed ID: 17124122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nucleation of protein crystals under the influence of solution shear flow.
    Penkova A; Pan W; Hodjaoglu F; Vekilov PG
    Ann N Y Acad Sci; 2006 Sep; 1077():214-31. PubMed ID: 17124126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Beneficial effect of solubility enhancers on protein crystal nucleation and growth.
    Gosavi RA; Bhamidi V; Varanasi S; Schall CA
    Langmuir; 2009 Apr; 25(8):4579-87. PubMed ID: 19309115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Random number generation by a two-dimensional crystal of protein molecules.
    Ikezoe Y; Kim SJ; Yamashita I; Hara M
    Langmuir; 2009 Apr; 25(8):4293-7. PubMed ID: 19366215
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quasi-planar nucleus structure in apoferritin crystallization.
    Yau ST; Vekilov PG
    Nature; 2000 Aug; 406(6795):494-7. PubMed ID: 10952306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increasing protein crystallization screening success with heterogeneous nucleating agents.
    Thakur AS; Newman J; Martin JL; Kobe B
    Methods Mol Biol; 2008; 426():403-9. PubMed ID: 18542879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular mechanisms of microheterogeneity-induced defect formation in ferritin crystallization.
    Yau ST; Thomas BR; Galkin O; Gliko O; Vekilov PG
    Proteins; 2001 Jun; 43(4):343-52. PubMed ID: 11340651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular-level thermodynamic and kinetic parameters for the self-assembly of apoferritin molecules into crystals.
    Yau ST; Petsev DN; Thomas BR; Vekilov PG
    J Mol Biol; 2000 Nov; 303(5):667-78. PubMed ID: 11061967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A kinetic model to simulate protein crystal growth in an evaporation-based crystallization platform.
    Talreja S; Kenis PJ; Zukoski CF
    Langmuir; 2007 Apr; 23(8):4516-22. PubMed ID: 17367178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural analysis of haemin demetallation by L-chain apoferritins.
    de Val N; Declercq JP; Lim CK; Crichton RR
    J Inorg Biochem; 2012 Jul; 112():77-84. PubMed ID: 22561545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Macromolecular crystallization in microgravity generated by a superconducting magnet.
    Wakayama NI; Yin DC; Harata K; Kiyoshi T; Fujiwara M; Tanimoto Y
    Ann N Y Acad Sci; 2006 Sep; 1077():184-93. PubMed ID: 17124123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Attempts to rationalize protein crystallization using relative crystallizability.
    Zhu DW; Garneau A; Mazumdar M; Zhou M; Xu GJ; Lin SX
    J Struct Biol; 2006 Jun; 154(3):297-302. PubMed ID: 16651006
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of a preliminary solubility screen to improve crystallization trials: uncoupling crystal condition searches.
    Izaac A; Schall CA; Mueser TC
    Acta Crystallogr D Biol Crystallogr; 2006 Jul; 62(Pt 7):833-42. PubMed ID: 16790940
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nucleation of insulin crystals in a wide continuous supersaturation gradient.
    Penkova A; Dimitrov I; Nanev C
    Ann N Y Acad Sci; 2004 Nov; 1027():56-63. PubMed ID: 15644345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlling protein crystal nucleation by droplet-based microfluidics.
    Maeki M; Teshima Y; Yoshizuka S; Yamaguchi H; Yamashita K; Miyazaki M
    Chemistry; 2014 Jan; 20(4):1049-56. PubMed ID: 24382819
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of buoyancy-driven convection on nucleation and growth of protein crystals.
    Nanev CN; Penkova A; Chayen N
    Ann N Y Acad Sci; 2004 Nov; 1027():1-9. PubMed ID: 15644340
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural description of the active sites of mouse L-chain ferritin at 1.2 A resolution.
    Granier T; Langlois d'Estaintot B; Gallois B; Chevalier JM; Précigoux G; Santambrogio P; Arosio P
    J Biol Inorg Chem; 2003 Jan; 8(1-2):105-11. PubMed ID: 12459904
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface differentiation of ferritin and apoferritin with atomic force microscopic techniques.
    Ho RH; Chen YH; Wang CM
    Colloids Surf B Biointerfaces; 2012 Jun; 94():231-5. PubMed ID: 22377219
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light-scattering investigations of nucleation processes and kinetics of crystallization in macromolecular systems.
    Malkin AJ; McPherson A
    Acta Crystallogr D Biol Crystallogr; 1994 Jul; 50(Pt 4):385-95. PubMed ID: 15299390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics and mechanisms of protein crystallization at the molecular level.
    Vekilov PG
    Methods Mol Biol; 2005; 300():15-52. PubMed ID: 15657478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.