BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 17124331)

  • 1. Original electronic design to perform epimysial and neural stimulation in paraplegia.
    Guiraud D; Stieglitz T; Taroni G; Divoux JL
    J Neural Eng; 2006 Dec; 3(4):276-86. PubMed ID: 17124331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An implantable neuroprosthesis for standing and walking in paraplegia: 5-year patient follow-up.
    Guiraud D; Stieglitz T; Koch KP; Divoux JL; Rabischong P
    J Neural Eng; 2006 Dec; 3(4):268-75. PubMed ID: 17124330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Implantation of a 16-channel functional electrical stimulation walking system.
    Sharma M; Marsolais EB; Polando G; Triolo RJ; Davis JA; Bhadra N; Uhlir JP
    Clin Orthop Relat Res; 1998 Feb; (347):236-42. PubMed ID: 9520896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance of epimysial stimulating electrodes in the lower extremities of individuals with spinal cord injury.
    Uhlir JP; Triolo RJ; Davis JA; Bieri C
    IEEE Trans Neural Syst Rehabil Eng; 2004 Jun; 12(2):279-87. PubMed ID: 15218941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Therapeutic electrical stimulation of the lower limb by epimysial electrodes.
    Waters RL; Campbell JM; Nakai R
    Clin Orthop Relat Res; 1988 Aug; (233):44-52. PubMed ID: 3261219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preliminary performance of a surgically implanted neuroprosthesis for standing and transfers--where do we stand?
    Davis JA; Triolo RJ; Uhlir J; Bieri C; Rohde L; Lissy D; Kukke S
    J Rehabil Res Dev; 2001; 38(6):609-17. PubMed ID: 11767968
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artificial vision: needs, functioning, and testing of a retinal electronic prosthesis.
    Chader GJ; Weiland J; Humayun MS
    Prog Brain Res; 2009; 175():317-32. PubMed ID: 19660665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a practical electrical stimulation system for restoring gait in the paralyzed patient.
    Marsolais EB; Kobetic R
    Clin Orthop Relat Res; 1988 Aug; (233):64-74. PubMed ID: 3261221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A distributed architecture for activating the peripheral nervous system.
    Andreu D; Guiraud D; Souquet G
    J Neural Eng; 2009 Apr; 6(2):026001. PubMed ID: 19213992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid paraplegic locomotion with the ParaWalker using intramuscular stimulation: a single subject study.
    Nene AV; Jennings SJ
    Paraplegia; 1989 Apr; 27(2):125-32. PubMed ID: 2785668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reliability of closed double helix electrode for functional electrical stimulation.
    Kagaya H; Sharma M; Polando G; Marsolais EB
    Clin Orthop Relat Res; 1998 Jan; (346):215-22. PubMed ID: 9577430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New functional electrical stimulation approaches to standing and walking.
    Mushahwar VK; Jacobs PL; Normann RA; Triolo RJ; Kleitman N
    J Neural Eng; 2007 Sep; 4(3):S181-97. PubMed ID: 17873417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hardware-software co-design of portable functional gastrointestinal stimulator system.
    Lin Y; Sanmiguel C; Turner LE; Soffer E; Mintchev MP
    J Med Eng Technol; 2003; 27(4):164-77. PubMed ID: 12851061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new means of transcutaneous coupling for neural prostheses.
    Gan LS; Prochazka A; Bornes TD; Denington AA; Chan KM
    IEEE Trans Biomed Eng; 2007 Mar; 54(3):509-17. PubMed ID: 17355064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated circuit amplifiers for multi-electrode intracortical recording.
    Jochum T; Denison T; Wolf P
    J Neural Eng; 2009 Feb; 6(1):012001. PubMed ID: 19139560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and clinical application of a double helix electrode for functional electrical stimulation.
    Scheiner A; Polando G; Marsolais EB
    IEEE Trans Biomed Eng; 1994 May; 41(5):425-31. PubMed ID: 8070801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A reusable, self-adhesive electrode for intraoperative stimulation in the lower limbs.
    Triolo RJ; Moss JD; Bhadra N
    J Rehabil Res Dev; 2001; 38(5):527-32. PubMed ID: 11732830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Implantation techniques and experience with percutaneous intramuscular electrodes in the lower extremities.
    Marsolais EB; Kobetic R
    J Rehabil Res Dev; 1986 Jul; 23(3):1-8. PubMed ID: 3490566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A CMOS retinal neurostimulator capable of focussed, simultaneous stimulation.
    Dommel NB; Wong YT; Lehmann T; Dodds CW; Lovell NH; Suaning GJ
    J Neural Eng; 2009 Jun; 6(3):035006. PubMed ID: 19458399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High frequency block of selected axons using an implantable microstimulator.
    Peng CW; Chen JJ; Lin CC; Poon PW; Liang CK; Lin KP
    J Neurosci Methods; 2004 Mar; 134(1):81-90. PubMed ID: 15102506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.