These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 17124333)

  • 1. A new planar multielectrode array: recording from a rat auditory cortex.
    Tsytsarev V; Taketani M; Schottler F; Tanaka S; Hara M
    J Neural Eng; 2006 Dec; 3(4):293-8. PubMed ID: 17124333
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrophysiological mapping of cat primary auditory cortex with multielectrode arrays.
    Kim SJ; Manyam SC; Warren DJ; Normann RA
    Ann Biomed Eng; 2006 Feb; 34(2):300-9. PubMed ID: 16496084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cortical microstimulation in auditory cortex of rat elicits best-frequency dependent behaviors.
    Otto KJ; Rousche PJ; Kipke DR
    J Neural Eng; 2005 Jun; 2(2):42-51. PubMed ID: 15928411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Custom-designed high-density conformal planar multielectrode arrays for brain slice electrophysiology.
    Gholmieh G; Soussou W; Han M; Ahuja A; Hsiao MC; Song D; Tanguay AR; Berger TW
    J Neurosci Methods; 2006 Apr; 152(1-2):116-29. PubMed ID: 16289315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microelectrode array on folding polyimide ribbon for epidural mapping of functional evoked potentials.
    Takahashi H; Ejiri T; Nakao M; Nakamura N; Kaga K; Hervé T
    IEEE Trans Biomed Eng; 2003 Apr; 50(4):510-6. PubMed ID: 12723063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An acute method for multielectrode recording from the interior of sulci and other deep brain areas.
    Purushothaman G; Scott BB; Bradley DC
    J Neurosci Methods; 2006 May; 153(1):86-94. PubMed ID: 16316688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Properties of correlated neural activity clusters in cat auditory cortex resemble those of neural assemblies.
    Eggermont JJ
    J Neurophysiol; 2006 Aug; 96(2):746-64. PubMed ID: 16835364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interfield differences in intensity and frequency representation of evoked potentials in rat auditory cortex.
    Takahashi H; Nakao M; Kaga K
    Hear Res; 2005 Dec; 210(1-2):9-23. PubMed ID: 16213681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural recording and stimulation of dissociated hippocampal cultures using microfabricated three-dimensional tip electrode array.
    Nam Y; Wheeler BC; Heuschkel MO
    J Neurosci Methods; 2006 Sep; 155(2):296-9. PubMed ID: 16494949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single unit recording capabilities of a 100 microelectrode array.
    Nordhausen CT; Maynard EM; Normann RA
    Brain Res; 1996 Jul; 726(1-2):129-40. PubMed ID: 8836553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel high channel-count system for acute multisite neuronal recordings.
    Hofmann UG; Folkers A; Mösch F; Malina T; Menne KM; Biella G; Fagerstedt P; De Schutter E; Jensen W; Yoshida K; Hoehl D; Thomas U; Kindlundh MG; Norlin P; de Curtis M
    IEEE Trans Biomed Eng; 2006 Aug; 53(8):1672-7. PubMed ID: 16916102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiparametric auditory receptive field organization across five cortical fields in the albino rat.
    Polley DB; Read HL; Storace DA; Merzenich MM
    J Neurophysiol; 2007 May; 97(5):3621-38. PubMed ID: 17376842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A MEMS fabricated flexible electrode array for recording surface field potentials.
    Hollenberg BA; Richards CD; Richards R; Bahr DF; Rector DM
    J Neurosci Methods; 2006 May; 153(1):147-53. PubMed ID: 16352343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A laser micromachined probe for recording multiple field potentials in the thalamus.
    Chen YY; Kuo TS; Jaw FS
    J Neurosci Methods; 2004 Oct; 139(1):99-109. PubMed ID: 15351526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silicon-substrate intracortical microelectrode arrays for long-term recording of neuronal spike activity in cerebral cortex.
    Kipke DR; Vetter RJ; Williams JC; Hetke JF
    IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):151-5. PubMed ID: 12899260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An economical multi-channel cortical electrode array for extended periods of recording during behavior.
    Rennaker RL; Ruyle AM; Street SE; Sloan AM
    J Neurosci Methods; 2005 Mar; 142(1):97-105. PubMed ID: 15652622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relation of unit spike discharges and evoked potentials in the auditory cortex of cats.
    Szente M; Fehér O
    Acta Physiol Acad Sci Hung; 1976; 48(2-3):117-30. PubMed ID: 1032255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microtube-based electrode arrays for low invasive extracellular recording with a high signal-to-noise ratio.
    Takei K; Kawano T; Kawashima T; Sawada K; Kaneko H; Ishida M
    Biomed Microdevices; 2010 Feb; 12(1):41-8. PubMed ID: 19757069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polytrodes: high-density silicon electrode arrays for large-scale multiunit recording.
    Blanche TJ; Spacek MA; Hetke JF; Swindale NV
    J Neurophysiol; 2005 May; 93(5):2987-3000. PubMed ID: 15548620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective activation of cat primary auditory cortex by way of direct intraneural auditory nerve stimulation.
    Kim SJ; Badi AN; Normann RA
    Laryngoscope; 2007 Jun; 117(6):1053-62. PubMed ID: 17545868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.