These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 17124579)
1. Optimization of culture conditions and scale-up to pilot and plant scales for coenzyme Q10 production by Agrobacterium tumefaciens. Ha SJ; Kim SY; Seo JH; Oh DK; Lee JK Appl Microbiol Biotechnol; 2007 Apr; 74(5):974-80. PubMed ID: 17124579 [TBL] [Abstract][Full Text] [Related]
2. Controlling the sucrose concentration increases Coenzyme Q10 production in fed-batch culture of Agrobacterium tumefaciens. Ha SJ; Kim SY; Seo JH; Moon HJ; Lee KM; Lee JK Appl Microbiol Biotechnol; 2007 Aug; 76(1):109-16. PubMed ID: 17479258 [TBL] [Abstract][Full Text] [Related]
3. Optimization of culture conditions and scale-up to pilot and plant scales for vancomycin production by Amycolatopsis orientalis. Jung HM; Kim SY; Moon HJ; Oh DK; Lee JK Appl Microbiol Biotechnol; 2007 Dec; 77(4):789-95. PubMed ID: 17938907 [TBL] [Abstract][Full Text] [Related]
4. Optimization of culture conditions and scale-up to plant scales for teicoplanin production by Actinoplanes teichomyceticus. Jung HM; Kim SY; Prabhu P; Moon HJ; Kim IW; Lee JK Appl Microbiol Biotechnol; 2008 Aug; 80(1):21-7. PubMed ID: 18542948 [TBL] [Abstract][Full Text] [Related]
5. Ca2+ increases the specific coenzyme Q10 content in Agrobacterium tumefaciens. Ha SJ; Kim SY; Seo JH; Jeya M; Zhang YW; Ramu T; Kim IW; Lee JK Bioprocess Biosyst Eng; 2009 Aug; 32(5):697-700. PubMed ID: 19381690 [TBL] [Abstract][Full Text] [Related]
6. [Effects of nutrient conditions and fed-batch culture on CoQ10 production by Rhizobium radiobacter WSH2601]. Zu-Fan W; Du GC; Chen J Sheng Wu Gong Cheng Xue Bao; 2003 Mar; 19(2):212-6. PubMed ID: 15966324 [TBL] [Abstract][Full Text] [Related]
7. Current state of coenzyme Q(10) production and its applications. Jeya M; Moon HJ; Lee JL; Kim IW; Lee JK Appl Microbiol Biotechnol; 2010 Feb; 85(6):1653-63. PubMed ID: 20012276 [TBL] [Abstract][Full Text] [Related]
8. Coenzyme Q10 production by Rhodobacter sphaeroides in stirred tank and in airlift bioreactor. Yen HW; Shih TY Bioprocess Biosyst Eng; 2009 Oct; 32(6):711-6. PubMed ID: 19153771 [TBL] [Abstract][Full Text] [Related]
9. Batch and fed-batch production of coenzyme Q10 in recombinant Escherichia coli containing the decaprenyl diphosphate synthase gene from Gluconobacter suboxydans. Park YC; Kim SJ; Choi JH; Lee WH; Park KM; Kawamukai M; Ryu YW; Seo JH Appl Microbiol Biotechnol; 2005 Apr; 67(2):192-6. PubMed ID: 15459799 [TBL] [Abstract][Full Text] [Related]
10. Coenzyme Q10 production in a 150-l reactor by a mutant strain of Rhodobacter sphaeroides. Kien NB; Kong IS; Lee MG; Kim JK J Ind Microbiol Biotechnol; 2010 May; 37(5):521-9. PubMed ID: 20195885 [TBL] [Abstract][Full Text] [Related]
11. Effect of limited oxygen supply on coenzyme Q(10) production and its relation to limited electron transfer and oxidative stress in Rhizobium radiobacter T6102. Seo MJ; Kim SO J Microbiol Biotechnol; 2010 Feb; 20(2):346-9. PubMed ID: 20208439 [TBL] [Abstract][Full Text] [Related]
12. Synergistic effects of chromosomal ispB deletion and dxs overexpression on coenzyme Q(10) production in recombinant Escherichia coli expressing Agrobacterium tumefaciens dps gene. Choi JH; Ryu YW; Park YC; Seo JH J Biotechnol; 2009 Oct; 144(1):64-9. PubMed ID: 19409940 [TBL] [Abstract][Full Text] [Related]
13. Coenzyme Q(10) production directly from precursors by free and gel-entrapped Sphingomonas sp. ZUTE03 in a water-organic solvent, two-phase conversion system. Zhong W; Wang W; Kong Z; Wu B; Zhong L; Li X; Yu J; Zhang F Appl Microbiol Biotechnol; 2011 Jan; 89(2):293-302. PubMed ID: 20857286 [TBL] [Abstract][Full Text] [Related]
14. [Effects of culture conditions on coenzyme Q10 production by Rhizobium radiobacter by metabolic flux analysis]. Wu ZF; Du GC; Chen J Wei Sheng Wu Xue Bao; 2005 Apr; 45(2):231-5. PubMed ID: 15989267 [TBL] [Abstract][Full Text] [Related]
15. Effects of cell lysis treatments on the yield of coenzyme Q10 following Agrobacterium tumefaciens fermentation. Yuting Tian ; Tianli Yue ; Jinjin Pei ; Yahong Yuan ; Juhai Li ; Martin Lo Y Food Sci Technol Int; 2010 Apr; 16(2):195-203. PubMed ID: 21339135 [TBL] [Abstract][Full Text] [Related]
16. Isolation of a novel high erythritol-producing Pseudozyma tsukubaensis and scale-up of erythritol fermentation to industrial level. Jeya M; Lee KM; Tiwari MK; Kim JS; Gunasekaran P; Kim SY; Kim IW; Lee JK Appl Microbiol Biotechnol; 2009 May; 83(2):225-31. PubMed ID: 19169680 [TBL] [Abstract][Full Text] [Related]
17. Quantification of power consumption and oxygen transfer characteristics of a stirred miniature bioreactor for predictive fermentation scale-up. Gill NK; Appleton M; Baganz F; Lye GJ Biotechnol Bioeng; 2008 Aug; 100(6):1144-55. PubMed ID: 18404769 [TBL] [Abstract][Full Text] [Related]
18. Purification of coenzyme Q10 from fermentation extract: high-speed counter-current chromatography versus silica gel column chromatography. Cao XL; Xu YT; Zhang GM; Xie SM; Dong YM; Ito Y J Chromatogr A; 2006 Sep; 1127(1-2):92-6. PubMed ID: 16797569 [TBL] [Abstract][Full Text] [Related]
19. Optimizing conditions for poly(beta-hydroxybutyrate) production by Halomonas boliviensis LC1 in batch culture with sucrose as carbon source. Quillaguamán J; Muñoz M; Mattiasson B; Hatti-Kaul R Appl Microbiol Biotechnol; 2007 Apr; 74(5):981-6. PubMed ID: 17160681 [TBL] [Abstract][Full Text] [Related]
20. Oxygen uptake rate optimization with nitrogen regulation for erythromycin production and scale-up from 50 L to 372 m3 scale. Zou X; Hang HF; Chu J; Zhuang YP; Zhang SL Bioresour Technol; 2009 Feb; 100(3):1406-12. PubMed ID: 18929481 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]