These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 17124630)

  • 1. Conformational specificity of non-canonical base pairs and higher order structures in nucleic acids: crystal structure database analysis.
    Mukherjee S; Bansal M; Bhattacharyya D
    J Comput Aided Mol Des; 2006; 20(10-11):629-45. PubMed ID: 17124630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-canonical base pairs and higher order structures in nucleic acids: crystal structure database analysis.
    Das J; Mukherjee S; Mitra A; Bhattacharyya D
    J Biomol Struct Dyn; 2006 Oct; 24(2):149-61. PubMed ID: 16928138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure, stability, and dynamics of canonical and noncanonical base pairs: quantum chemical studies.
    Roy A; Panigrahi S; Bhattacharyya M; Bhattacharyya D
    J Phys Chem B; 2008 Mar; 112(12):3786-96. PubMed ID: 18318519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trans Hoogsteen/sugar edge base pairing in RNA. Structures, energies, and stabilities from quantum chemical calculations.
    Mládek A; Sharma P; Mitra A; Bhattacharyya D; Sponer J; Sponer JE
    J Phys Chem B; 2009 Feb; 113(6):1743-55. PubMed ID: 19152254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA structure and dynamics: a base pairing perspective.
    Halder S; Bhattacharyya D
    Prog Biophys Mol Biol; 2013 Nov; 113(2):264-83. PubMed ID: 23891726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the role of the cis Hoogsteen:sugar-edge family of base pairs in platforms and triplets-quantum chemical insights into RNA structural biology.
    Sharma P; Sponer JE; Sponer J; Sharma S; Bhattacharyya D; Mitra A
    J Phys Chem B; 2010 Mar; 114(9):3307-20. PubMed ID: 20163171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unique tertiary and neighbor interactions determine conservation patterns of Cis Watson-Crick A/G base-pairs.
    Sponer J; Mokdad A; Sponer JE; Spacková N; Leszczynski J; Leontis NB
    J Mol Biol; 2003 Jul; 330(5):967-78. PubMed ID: 12860120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Base pairs and pseudo pairs observed in RNA-ligand complexes.
    Kondo J; Westhof E
    J Mol Recognit; 2010; 23(2):241-52. PubMed ID: 19701919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sugar edge/sugar edge base pairs in RNA: stabilities and structures from quantum chemical calculations.
    Sponer JE; Leszczynski J; Sychrovský V; Sponer J
    J Phys Chem B; 2005 Oct; 109(39):18680-9. PubMed ID: 16853403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inferring the conformation of RNA base pairs and triples from patterns of sequence variation.
    Gautheret D; Gutell RR
    Nucleic Acids Res; 1997 Apr; 25(8):1559-64. PubMed ID: 9092662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stacking geometry for non-canonical G:U wobble base pair containing dinucleotide sequences in RNA: dispersion-corrected DFT-D study.
    Mondal M; Mukherjee S; Halder S; Bhattacharyya D
    Biopolymers; 2015 Jun; 103(6):328-38. PubMed ID: 25652776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Principles of RNA base pairing: structures and energies of the trans Watson-Crick/sugar edge base pairs.
    Sponer JE; Spackova N; Leszczynski J; Sponer J
    J Phys Chem B; 2005 Jun; 109(22):11399-410. PubMed ID: 16852393
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-Watson-Crick base pairing in RNA. quantum chemical analysis of the cis Watson-Crick/sugar edge base pair family.
    Sponer JE; Spacková N; Kulhanek P; Leszczynski J; Sponer J
    J Phys Chem A; 2005 Mar; 109(10):2292-301. PubMed ID: 16838999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Watson-Crick and Hoogsteen base pairing on the conformational stability of C8-phenoxyl-2'-deoxyguanosine adducts.
    Millen AL; Churchill CD; Manderville RA; Wetmore SD
    J Phys Chem B; 2010 Oct; 114(40):12995-3004. PubMed ID: 20853889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diversity of base-pair conformations and their occurrence in rRNA structure and RNA structural motifs.
    Lee JC; Gutell RR
    J Mol Biol; 2004 Dec; 344(5):1225-49. PubMed ID: 15561141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA deformability at the base pair level.
    Lankas F; Sponer J; Langowski J; Cheatham TE
    J Am Chem Soc; 2004 Apr; 126(13):4124-5. PubMed ID: 15053599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNA canonical and non-canonical base pairing types: a recognition method and complete repertoire.
    Lemieux S; Major F
    Nucleic Acids Res; 2002 Oct; 30(19):4250-63. PubMed ID: 12364604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BPS: a database of RNA base-pair structures.
    Xin Y; Olson WK
    Nucleic Acids Res; 2009 Jan; 37(Database issue):D83-8. PubMed ID: 18845572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A-minor tertiary interactions in RNA kink-turns. Molecular dynamics and quantum chemical analysis.
    Réblová K; Šponer JE; Špačková N; Beššeová I; Šponer J
    J Phys Chem B; 2011 Dec; 115(47):13897-910. PubMed ID: 21999672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Database of non-canonical base pairs found in known RNA structures.
    Nagaswamy U; Voss N; Zhang Z; Fox GE
    Nucleic Acids Res; 2000 Jan; 28(1):375-6. PubMed ID: 10592279
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.