These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 171247)
1. Degradation of phospholipid in Pseudomonas aeruginosa induced by polymyxin B. Kusano T; Izaki K; Takahashi H J Antibiot (Tokyo); 1975 Sep; 28(9):689-95. PubMed ID: 171247 [TBL] [Abstract][Full Text] [Related]
2. Alterations of Metabolic and Lipid Profiles in Polymyxin-Resistant Pseudomonas aeruginosa. Han ML; Zhu Y; Creek DJ; Lin YW; Anderson D; Shen HH; Tsuji B; Gutu AD; Moskowitz SM; Velkov T; Li J Antimicrob Agents Chemother; 2018 Jun; 62(6):. PubMed ID: 29632014 [TBL] [Abstract][Full Text] [Related]
3. Conversion of phospholipids to free fatty acids in response to acquisition of polymyxin resistance in Pseudomonas aeruginosa. Champlin FR; Gilleland HE; Conrad RS Antimicrob Agents Chemother; 1983 Jul; 24(1):5-9. PubMed ID: 6312874 [TBL] [Abstract][Full Text] [Related]
4. Synergism between chlorhexidine and polymyxins against Pseudomonas aeruginosa. Al-Najjar AR; Quesnel LB J Appl Bacteriol; 1979 Dec; 47(3):469-76. PubMed ID: 232100 [No Abstract] [Full Text] [Related]
5. Action of polymyxin B on bacterial membranes: phosphatidylglycerol- and cardiolipin-induced susceptibility to polymyxin B in Acholeplasma laidlawii B. Teuber M; Bader J Antimicrob Agents Chemother; 1976 Jan; 9(1):26-35. PubMed ID: 176930 [TBL] [Abstract][Full Text] [Related]
6. Chemical alterations in cell envelopes of Pseudomonas aeruginosa upon exposure to polymyxin: a possible mechanism to explain adaptive resistance to polymyxin. Gilleland HE; Champlin FR; Conrad RS Can J Microbiol; 1984 Jul; 30(7):869-73. PubMed ID: 6089986 [TBL] [Abstract][Full Text] [Related]
7. Lipid alterations in cell envelopes of polymyxin-resistant Pseudomonas aeruginosa isolates. Conrad RS; Gilleland HE J Bacteriol; 1981 Nov; 148(2):487-97. PubMed ID: 6271731 [TBL] [Abstract][Full Text] [Related]
8. Polymyxin-Induced Lipid A Deacylation in Pseudomonas aeruginosa Perturbs Polymyxin Penetration and Confers High-Level Resistance. Han ML; Velkov T; Zhu Y; Roberts KD; Le Brun AP; Chow SH; Gutu AD; Moskowitz SM; Shen HH; Li J ACS Chem Biol; 2018 Jan; 13(1):121-130. PubMed ID: 29182311 [TBL] [Abstract][Full Text] [Related]
9. Relation between cation and lipid content of cell walls of Pseudomonas aeruginosa, Proteus vulgaris and Klebsiella aerogenes and their sensitivity to polymyxin B and other antibacterial agents. Brown MR; Wood SM J Pharm Pharmacol; 1972 Mar; 24(3):215-8. PubMed ID: 4402781 [No Abstract] [Full Text] [Related]
11. In vivo activation by polymyxin B of phospholipase from Pseudomonas aeruginosa and Escherichia coli. Kusano T; Izaki K; Takahashi H J Antibiot (Tokyo); 1976 Jun; 29(6):674-5. PubMed ID: 181357 [No Abstract] [Full Text] [Related]
12. Chemical alterations in cell envelopes of polymyxin-resistant mutants of Pseudomonas aeruginosa grown in the absence or presence of polymyxin. Gilleland HE; Conrad RS Antimicrob Agents Chemother; 1982 Dec; 22(6):1012-6. PubMed ID: 6297381 [TBL] [Abstract][Full Text] [Related]
13. Degraded and stable phosphatidylglycerol in Escherichia coli inner and outer membranes, and recycling of fatty acyl residues. Joseleau-Petit D; Kepes A Biochim Biophys Acta; 1982 Apr; 711(1):1-9. PubMed ID: 7039685 [TBL] [Abstract][Full Text] [Related]
14. Induction of polymyxin resistance in Pseudomonas fluorescens by phosphate limitation. Dorrer E; Teuber M Arch Microbiol; 1977 Jul; 114(1):87-9. PubMed ID: 199125 [TBL] [Abstract][Full Text] [Related]
15. Pseudomonas aeruginosa Oligoribonuclease Controls Tolerance to Polymyxin B by Regulating Pel Exopolysaccharide Production. Yang B; Jiang Y; Jin Y; Bai F; Cheng Z; Wu W Antimicrob Agents Chemother; 2022 Mar; 66(3):e0207221. PubMed ID: 35007136 [TBL] [Abstract][Full Text] [Related]
16. Interdigitated gel phase bilayers formed by unsaturated synthetic and bacterial glycerolipids in the presence of polymyxin B and glycerol. Boggs JM; Tümmler B Biochim Biophys Acta; 1993 Jan; 1145(1):42-50. PubMed ID: 8380717 [TBL] [Abstract][Full Text] [Related]
17. Effect of glycerol deprivation on the phospholipid metabolism of a glycerol auxotroph of Staphylococcus aureus. Ray PH; White DC J Bacteriol; 1972 Feb; 109(2):668-77. PubMed ID: 5058448 [TBL] [Abstract][Full Text] [Related]
18. Pseudomonas aeruginosa responds to exogenous polyunsaturated fatty acids (PUFAs) by modifying phospholipid composition, membrane permeability, and phenotypes associated with virulence. Baker LY; Hobby CR; Siv AW; Bible WC; Glennon MS; Anderson DM; Symes SJ; Giles DK BMC Microbiol; 2018 Sep; 18(1):117. PubMed ID: 30217149 [TBL] [Abstract][Full Text] [Related]
19. Additivity of action between polysorbate 80 and polymyxin B towards spheroplasts of Pseudomonas aeruginosa NCTC 6750. Brown MR; Geaton EM; Gilbert P J Pharm Pharmacol; 1979 Mar; 31(3):168-70. PubMed ID: 34692 [TBL] [Abstract][Full Text] [Related]
20. Mechanism of polymyxin B resistance in Proteus mirabilis. Sud IJ; Feingold DS J Bacteriol; 1970 Oct; 104(1):289-94. PubMed ID: 4319722 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]