These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 17125318)

  • 1. How do aryl groups attach to a graphene sheet?
    Jiang DE; Sumpter BG; Dai S
    J Phys Chem B; 2006 Nov; 110(47):23628-32. PubMed ID: 17125318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unique chemical reactivity of a graphene nanoribbon's zigzag edge.
    Jiang DE; Sumpter BG; Dai S
    J Chem Phys; 2007 Apr; 126(13):134701. PubMed ID: 17430050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preferential functionalization on zigzag graphene nanoribbons: first-principles calculations.
    Lee H
    J Phys Condens Matter; 2010 Sep; 22(35):352205. PubMed ID: 21403278
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Edge versus interior in the chemical bonding and magnetism of zigzag edged triangular graphene molecules.
    Philpott MR; Vukovic S; Kawazoe Y; Lester WA
    J Chem Phys; 2010 Jul; 133(4):044708. PubMed ID: 20687677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the addition of aryl radicals to graphene: the importance of nonbonded interactions.
    Denis PA
    Chemphyschem; 2013 Oct; 14(14):3271-7. PubMed ID: 23934897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal dynamics of graphene edges investigated by polarized Raman spectroscopy.
    Xu YN; Zhan D; Liu L; Suo H; Ni ZH; Nguyen TT; Zhao C; Shen ZX
    ACS Nano; 2011 Jan; 5(1):147-52. PubMed ID: 21171568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. First principles study of the graphene/Ru(0001) interface.
    Jiang DE; Du MH; Dai S
    J Chem Phys; 2009 Feb; 130(7):074705. PubMed ID: 19239307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bonding and magnetism in nanosized graphene molecules: Singlet states of zigzag edged hexangulenes C(6m(2) )H(6m)(m=2,3,...,10).
    Philpott MR; Kawazoe Y
    J Chem Phys; 2009 Dec; 131(21):214706. PubMed ID: 19968359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Localized Gaussian type orbital-periodic boundary condition-density functional theory study of infinite-length single-walled carbon nanotubes with various tubular diameters.
    Wang HW; Wang BC; Chen WH; Hayashi M
    J Phys Chem A; 2008 Feb; 112(8):1783-90. PubMed ID: 18247507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Observation of phonon anomaly at the armchair edge of single-layer graphene in air.
    Zhang W; Li LJ
    ACS Nano; 2011 Apr; 5(4):3347-53. PubMed ID: 21388225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduced uranium complexes: synthetic and DFT study of the role of pi ligation in the stabilization of uranium species in a formal low-valent state.
    Korobkov I; Gorelsky S; Gambarotta S
    J Am Chem Soc; 2009 Aug; 131(30):10406-20. PubMed ID: 19588963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quenching of local magnetic moment in oxygen adsorbed graphene nanoribbons.
    Veiga RG; Miwa RH; Srivastava GP
    J Chem Phys; 2008 May; 128(20):201101. PubMed ID: 18513000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electronic and magnetic properties of armchair and zigzag graphene nanoribbons.
    Owens FJ
    J Chem Phys; 2008 May; 128(19):194701. PubMed ID: 18500880
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Edge state magnetism of single layer graphene nanostructures.
    Bhowmick S; Shenoy VB
    J Chem Phys; 2008 Jun; 128(24):244717. PubMed ID: 18601375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and electronic properties of hydrogen adsorptions on BC₃ sheet and graphene: a comparative study.
    Chuang FC; Huang ZQ; Lin WH; Albao MA; Su WS
    Nanotechnology; 2011 Apr; 22(13):135703. PubMed ID: 21343638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of nonmagnetic impurities on the spin transport property of a graphene nanoribbon device.
    Park J; Yang H; Park KS; Lee EK
    J Chem Phys; 2009 Jun; 130(21):214103. PubMed ID: 19508052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Graphene layer growth chemistry: five- and six-member ring flip reaction.
    Whitesides R; Domin D; Salomón-Ferrer R; Lester WA; Frenklach M
    J Phys Chem A; 2008 Mar; 112(10):2125-30. PubMed ID: 18085755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. First principles study of magnetism in nanographenes.
    Jiang DE; Sumpter BG; Dai S
    J Chem Phys; 2007 Sep; 127(12):124703. PubMed ID: 17902927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active sites in graphene and the mechanism of CO2 formation in carbon oxidation.
    Radovic LR
    J Am Chem Soc; 2009 Dec; 131(47):17166-75. PubMed ID: 19891428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structures and interaction energies of stacked graphene-nucleobase complexes.
    Antony J; Grimme S
    Phys Chem Chem Phys; 2008 May; 10(19):2722-9. PubMed ID: 18464987
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.