These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 17125338)

  • 21. Optimum conditions for adsorptive storage.
    Bhatia SK; Myers AL
    Langmuir; 2006 Feb; 22(4):1688-700. PubMed ID: 16460092
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhanced hydrogen adsorption in boron substituted carbon nanospaces.
    Firlej L; Roszak S; Kuchta B; Pfeifer P; Wexler C
    J Chem Phys; 2009 Oct; 131(16):164702. PubMed ID: 19894965
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quasi one-dimensional nanopores in single-wall carbon nanohorn colloids using grand canonical Monte Carlo simulation aided adsorption technique.
    Ohba T; Kanoh H; Yudasaka M; Iijima S; Kaneko K
    J Phys Chem B; 2005 May; 109(18):8659-62. PubMed ID: 16852025
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Boltzmann bias grand canonical Monte Carlo.
    Garberoglio G
    J Chem Phys; 2008 Apr; 128(13):134109. PubMed ID: 18397055
    [TBL] [Abstract][Full Text] [Related]  

  • 25. On the separation of nonadditive symmetric mixtures in nanoscopic slitlike pores: A simple model for racemic fluids.
    Patrykiejew A; Sokołowski S; Pizio O
    J Phys Chem B; 2005 Jul; 109(29):14227-34. PubMed ID: 16852786
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Heat of adsorption, adsorption stress, and optimal storage of methane in slit and cylindrical carbon pores predicted by classical density functional theory.
    Hlushak S
    Phys Chem Chem Phys; 2018 Jan; 20(2):872-888. PubMed ID: 29239426
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adsorptive behavior of CO2, CH4 and their mixtures in carbon nanospace: a molecular simulation study.
    Palmer JC; Moore JD; Roussel TJ; Brennan JK; Gubbins KE
    Phys Chem Chem Phys; 2011 Mar; 13(9):3985-96. PubMed ID: 21234499
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Adsorption and desorption of hydrogen on metal-organic framework materials for storage applications: comparison with other nanoporous materials.
    Thomas KM
    Dalton Trans; 2009 Mar; (9):1487-505. PubMed ID: 19421589
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Canonical Monte Carlo simulation of adsorption of O2 and N2 mixture on single walled carbon nanotube at different temperatures and pressures.
    Rafati AA; Hashemianzadeh SM; Nojini ZB; Naghshineh N
    J Comput Chem; 2010 May; 31(7):1443-9. PubMed ID: 20082390
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cryogenic separation of hydrogen isotopes in single-walled carbon and boron-nitride nanotubes: insight into the mechanism of equilibrium quantum sieving in quasi-one-dimensional pores.
    Kowalczyk P; Gauden PA; Terzyk AP
    J Phys Chem B; 2008 Jul; 112(28):8275-84. PubMed ID: 18570395
    [TBL] [Abstract][Full Text] [Related]  

  • 31. DFT-based prediction of high-pressure H2 adsorption on porous carbons at ambient temperatures from low-pressure adsorption data measured at 77 K.
    Jagiello J; Ansón A; Martínez MT
    J Phys Chem B; 2006 Mar; 110(10):4531-4. PubMed ID: 16526679
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modeling of low temperature adsorption of hydrogen in carbon nanopores.
    Rogacka J; Firlej L; Kuchta B
    J Mol Model; 2017 Jan; 23(1):20. PubMed ID: 28050724
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Flame acceleration and the development of detonation in fuel-oxygen mixtures at elevated temperatures and pressures.
    Thomas GO
    J Hazard Mater; 2009 Apr; 163(2-3):783-94. PubMed ID: 18782653
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Adsorption of carbon tetrachloride on graphitized thermal carbon black and in slit graphitic pores: five-site versus one-site potential models.
    Do DD; Do HD
    J Phys Chem B; 2006 May; 110(19):9520-8. PubMed ID: 16686498
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular dynamics simulations of transport and separation of carbon dioxide-alkane mixtures in carbon nanopores.
    Firouzi M; Nezhad KhM; Tsotsis TT; Sahimi M
    J Chem Phys; 2004 May; 120(17):8172-85. PubMed ID: 15267737
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metal-organic frameworks impregnated with magnesium-decorated fullerenes for methane and hydrogen storage.
    Thornton AW; Nairn KM; Hill JM; Hill AJ; Hill MR
    J Am Chem Soc; 2009 Aug; 131(30):10662-9. PubMed ID: 19583258
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Theoretical prediction of high pressure methane adsorption in porous aromatic frameworks (PAFs).
    Cossi M; Gatti G; Canti L; Tei L; Errahali M; Marchese L
    Langmuir; 2012 Oct; 28(40):14405-14. PubMed ID: 22935012
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The structure of fluids confined in crystalline slitlike nanoscopic pores.
    Sałamacha L; Patrykiejew A; Sokołowski S; Binder K
    J Chem Phys; 2005 Feb; 122(7):074703. PubMed ID: 15743261
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reversible transient hydrogen storage in a fuel cell-supercapacitor hybrid device.
    Unda JE; Roduner E
    Phys Chem Chem Phys; 2012 Mar; 14(11):3816-24. PubMed ID: 22318367
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hydrogen storage in nanostructured carbons by spillover: bridge-building enhancement.
    Lachawiec AJ; Qi G; Yang RT
    Langmuir; 2005 Nov; 21(24):11418-24. PubMed ID: 16285820
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.