These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 17125782)

  • 1. Monte Carlo modeling of ion adsorption at the energetically heterogeneous metal oxide/electrolyte interface: Micro- and macroscopic correlations between adsorption energies.
    Zarzycki P
    J Colloid Interface Sci; 2007 Feb; 306(2):328-36. PubMed ID: 17125782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monte Carlo study of the topographic effects on the proton binding at the energetically heterogeneous metal oxide/electrolyte interface.
    Zarzycki P
    Langmuir; 2006 Dec; 22(26):11234-40. PubMed ID: 17154609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monte Carlo simulation of the electrical differential capacitance of a double electrical layer formed at the heterogeneous metal oxide/electrolyte interface.
    Zarzycki P
    J Colloid Interface Sci; 2006 May; 297(1):204-14. PubMed ID: 16325839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effective adsorption energy distribution function as a new mean-field characteristic of surface heterogeneity in adsorption systems with lateral interactions.
    Zarzycki P
    J Colloid Interface Sci; 2007 Jul; 311(2):622-7. PubMed ID: 17449056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of proton adsorption at heterogeneous oxide/electrolyte interface. Prediction of the surface potential using Monte Carlo simulations and 1-pK approach.
    Zarzycki P; Charmas R; Szabelski P
    J Comput Chem; 2004 Apr; 25(5):704-11. PubMed ID: 14978713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic Monte Carlo study of proton binding at the metal oxide/electrolyte interface.
    Zarzycki P
    J Colloid Interface Sci; 2007 Nov; 315(1):54-62. PubMed ID: 17719059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonlinear response of the surface electrostatic potential formed at metal oxide/electrolyte interfaces. A Monte Carlo simulation study.
    Zarzycki P; Rosso KM
    J Colloid Interface Sci; 2010 Jan; 341(1):143-52. PubMed ID: 19836754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Montmorillonite surface properties and sorption characteristics for heavy metal removal from aqueous solutions.
    Ijagbemi CO; Baek MH; Kim DS
    J Hazard Mater; 2009 Jul; 166(1):538-46. PubMed ID: 19131158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping the surface (hydr)oxo-groups of titanium oxide and its interface with an aqueous solution: the state of the art and a new approach.
    Panagiotou GD; Petsi T; Bourikas K; Garoufalis CS; Tsevis A; Spanos N; Kordulis C; Lycourghiotis A
    Adv Colloid Interface Sci; 2008 Oct; 142(1-2):20-42. PubMed ID: 18511015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling of binary adsorption on heterogeneous surfaces characterized by a quasi-gaussian adsorption energy distribution.
    Nieszporek K; Szabelski P; Drach M
    Langmuir; 2005 Aug; 21(16):7335-41. PubMed ID: 16042463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Origin of two time-scale regimes in potentiometric titration of metal oxides. A replica kinetic Monte Carlo study.
    Zarzycki P; Rosso KM
    Langmuir; 2009 Jun; 25(12):6841-8. PubMed ID: 19425599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Grand canonical Monte Carlo investigations of electrical double layer in molten salts.
    Lamperski S; Kłos J
    J Chem Phys; 2008 Oct; 129(16):164503. PubMed ID: 19045280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of the parameters for the 1-pK triple-layer model of ion adsorption onto oxides from known parameter values for the 2-pK TLM.
    Piasecki W
    J Colloid Interface Sci; 2006 Oct; 302(2):389-95. PubMed ID: 16904684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical study of the acid-base properties of the montmorillonite/electrolyte interface: influence of the surface heterogeneity and ionic strength on the potentiometric titration curves.
    Zarzycki P; Thomas F
    J Colloid Interface Sci; 2006 Oct; 302(2):547-59. PubMed ID: 16904121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overcharging and charge reversal in the electrical double layer around the point of zero charge.
    Guerrero-García GI; González-Tovar E; Chávez-Páez M; Lozada-Cassou M
    J Chem Phys; 2010 Feb; 132(5):054903. PubMed ID: 20136335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrical double layer interactions between dissimilar oxide surfaces with charge regulation and Stern-Grahame layers.
    Chan DY; Healy TW; Supasiti T; Usui S
    J Colloid Interface Sci; 2006 Apr; 296(1):150-8. PubMed ID: 16209871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlling the cohesion of cement paste.
    Jönsson B; Nonat A; Labbez C; Cabane B; Wennerström H
    Langmuir; 2005 Sep; 21(20):9211-21. PubMed ID: 16171354
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 1pK and 2pK protonation models in the theoretical description of simple ion adsorption at the oxide/electrolyte interface: the analysis of temperature dependence of potentiometric titration curves.
    Piasecki W
    J Colloid Interface Sci; 2002 Oct; 254(1):56-63. PubMed ID: 12702425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The water-amorphous silica interface: analysis of the Stern layer and surface conduction.
    Zhang H; Hassanali AA; Shin YK; Knight C; Singer SJ
    J Chem Phys; 2011 Jan; 134(2):024705. PubMed ID: 21241144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption of aqueous metal ions on oxygen and nitrogen functionalized nanoporous activated carbons.
    Xiao B; Thomas KM
    Langmuir; 2005 Apr; 21(9):3892-902. PubMed ID: 15835952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.