These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
363 related articles for article (PubMed ID: 17126395)
1. The construction of three-dimensional micro-fluidic scaffolds of biodegradable polymers by solvent vapor based bonding of micro-molded layers. Ryu W; Min SW; Hammerick KE; Vyakarnam M; Greco RS; Prinz FB; Fasching RJ Biomaterials; 2007 Feb; 28(6):1174-84. PubMed ID: 17126395 [TBL] [Abstract][Full Text] [Related]
2. Development and characterization of a porous micro-patterned scaffold for vascular tissue engineering applications. Sarkar S; Lee GY; Wong JY; Desai TA Biomaterials; 2006 Sep; 27(27):4775-82. PubMed ID: 16725195 [TBL] [Abstract][Full Text] [Related]
3. The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis. Sung HJ; Meredith C; Johnson C; Galis ZS Biomaterials; 2004 Nov; 25(26):5735-42. PubMed ID: 15147819 [TBL] [Abstract][Full Text] [Related]
4. Fabrication of well-defined PLGA scaffolds using novel microembossing and carbon dioxide bonding. Yang Y; Basu S; Tomasko DL; Lee LJ; Yang ST Biomaterials; 2005 May; 26(15):2585-94. PubMed ID: 15585261 [TBL] [Abstract][Full Text] [Related]
5. Osteoblast response to PLGA tissue engineering scaffolds with PEO modified surface chemistries and demonstration of patterned cell response. Koegler WS; Griffith LG Biomaterials; 2004 Jun; 25(14):2819-30. PubMed ID: 14962560 [TBL] [Abstract][Full Text] [Related]
7. Fabrication and characterization of PLGA/HAp composite scaffolds for delivery of BMP-2 plasmid DNA. Nie H; Wang CH J Control Release; 2007 Jul; 120(1-2):111-21. PubMed ID: 17512077 [TBL] [Abstract][Full Text] [Related]
8. Fabrication of microstructures in photosensitive biodegradable polymers for tissue engineering applications. Leclerc E; Furukawa KS; Miyata F; Sakai Y; Ushida T; Fujii T Biomaterials; 2004 Aug; 25(19):4683-90. PubMed ID: 15120514 [TBL] [Abstract][Full Text] [Related]
9. Effects of composition, solvent, and salt particles on the physicochemical properties of polyglycolide/poly(lactide-co-glycolide) scaffolds. Kuo YC; Leou SN Biotechnol Prog; 2006; 22(6):1664-70. PubMed ID: 17137316 [TBL] [Abstract][Full Text] [Related]
10. Electrospun nano- to microfiber fabrics made of biodegradable copolyesters: structural characteristics, mechanical properties and cell adhesion potential. Kwon IK; Kidoaki S; Matsuda T Biomaterials; 2005 Jun; 26(18):3929-39. PubMed ID: 15626440 [TBL] [Abstract][Full Text] [Related]
11. Surface modification of biodegradable electrospun nanofiber scaffolds and their interaction with fibroblasts. Park K; Ju YM; Son JS; Ahn KD; Han DK J Biomater Sci Polym Ed; 2007; 18(4):369-82. PubMed ID: 17540114 [TBL] [Abstract][Full Text] [Related]
12. Fabrication of multi-layered biodegradable drug delivery device based on micro-structuring of PLGA polymers. Ryu WH; Vyakarnam M; Greco RS; Prinz FB; Fasching RJ Biomed Microdevices; 2007 Dec; 9(6):845-53. PubMed ID: 17577671 [TBL] [Abstract][Full Text] [Related]
14. Fiber-based tissue-engineered scaffold for ligament replacement: design considerations and in vitro evaluation. Cooper JA; Lu HH; Ko FK; Freeman JW; Laurencin CT Biomaterials; 2005 May; 26(13):1523-32. PubMed ID: 15522754 [TBL] [Abstract][Full Text] [Related]
15. Vascularization and gene regulation of human endothelial cells growing on porous polyethersulfone (PES) hollow fiber membranes. Unger RE; Peters K; Huang Q; Funk A; Paul D; Kirkpatrick CJ Biomaterials; 2005 Jun; 26(17):3461-9. PubMed ID: 15621235 [TBL] [Abstract][Full Text] [Related]
16. Scaffold fabrication by indirect three-dimensional printing. Lee M; Dunn JC; Wu BM Biomaterials; 2005 Jul; 26(20):4281-9. PubMed ID: 15683652 [TBL] [Abstract][Full Text] [Related]
17. Cellular control of tissue architectures using a three-dimensional tissue fabrication technique. Tsuda Y; Shimizu T; Yamato M; Kikuchi A; Sasagawa T; Sekiya S; Kobayashi J; Chen G; Okano T Biomaterials; 2007 Nov; 28(33):4939-46. PubMed ID: 17709135 [TBL] [Abstract][Full Text] [Related]
18. Characterization of porous poly(D,L-lactic-co-glycolic acid) sponges fabricated by supercritical CO2 gas-foaming method as a scaffold for three-dimensional growth of Hep3B cells. Zhu XH; Lee LY; Jackson JS; Tong YW; Wang CH Biotechnol Bioeng; 2008 Aug; 100(5):998-1009. PubMed ID: 18551526 [TBL] [Abstract][Full Text] [Related]
19. Development of biodegradable scaffolds based on patient-specific arterial configuration. Uchida T; Ikeda S; Oura H; Tada M; Nakano T; Fukuda T; Matsuda T; Negoro M; Arai F J Biotechnol; 2008 Jan; 133(2):213-8. PubMed ID: 17868940 [TBL] [Abstract][Full Text] [Related]
20. Tissue engineering of blood vessels: characterization of smooth-muscle cells for culturing on collagen-and-elastin-based scaffolds. Buijtenhuijs P; Buttafoco L; Poot AA; Daamen WF; van Kuppevelt TH; Dijkstra PJ; de Vos RA; Sterk LM; Geelkerken BR; Feijen J; Vermes I Biotechnol Appl Biochem; 2004 Apr; 39(Pt 2):141-9. PubMed ID: 15032734 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]