BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 17126469)

  • 1. Effect of acetaminophen administration to rats chronically exposed to depleted uranium.
    Guéguen Y; Grandcolas L; Baudelin C; Grison S; Tissandié E; Jourdain JR; Paquet F; Voisin P; Aigueperse J; Gourmelon P; Souidi M
    Toxicology; 2007 Jan; 229(1-2):62-72. PubMed ID: 17126469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protection against acetaminophen toxicity in CYP1A2 and CYP2E1 double-null mice.
    Zaher H; Buters JT; Ward JM; Bruno MK; Lucas AM; Stern ST; Cohen SD; Gonzalez FJ
    Toxicol Appl Pharmacol; 1998 Sep; 152(1):193-9. PubMed ID: 9772215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A nutrient mixture prevents acetaminophen hepatic and renal toxicity in ICR mice.
    Roomi MW; Kalinovsky T; Ivanov V; Rath M; Niedzwiecki A
    Hum Exp Toxicol; 2008 Mar; 27(3):223-30. PubMed ID: 18650254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of depleted uranium after short-term exposure on vitamin D metabolism in rat.
    Tissandie E; Guéguen Y; Lobaccaro JM; Paquet F; Aigueperse J; Souidi M
    Arch Toxicol; 2006 Aug; 80(8):473-80. PubMed ID: 16502312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alteration in metabolism and toxicity of acetaminophen upon repeated administration in rats.
    Kim SJ; Lee MY; Kwon DY; Kim SY; Kim YC
    J Pharmacol Sci; 2009 Oct; 111(2):175-81. PubMed ID: 19834287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular, cellular, and tissue impact of depleted uranium on xenobiotic-metabolizing enzymes.
    Gueguen Y; Rouas C; Monin A; Manens L; Stefani J; Delissen O; Grison S; Dublineau I
    Arch Toxicol; 2014 Feb; 88(2):227-39. PubMed ID: 24146111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of the anticancer dehydrotarplatin on cytochrome P450 and antioxidant enzymes in male rat tissues.
    Nannelli A; Messina A; Marini S; Trasciatti S; Longo V; Gervasi PG
    Arch Toxicol; 2007 Jul; 81(7):479-87. PubMed ID: 17364183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Different pattern of brain pro-/anti-oxidant activity between depleted and enriched uranium in chronically exposed rats.
    Lestaevel P; Romero E; Dhieux B; Ben Soussan H; Berradi H; Dublineau I; Voisin P; Gourmelon P
    Toxicology; 2009 Apr; 258(1):1-9. PubMed ID: 19154773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Renal dysfunction induced by long-term exposure to depleted uranium in rats.
    Zhu G; Xiang X; Chen X; Wang L; Hu H; Weng S
    Arch Toxicol; 2009 Jan; 83(1):37-46. PubMed ID: 18594794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of choline-deprivation on paracetamol- or phenobarbital-induced rat liver metabolic response.
    Konstandi M; Segos D; Galanopoulou P; Theocharis S; Zarros A; Lang MA; Marselos M; Liapi C
    J Appl Toxicol; 2009 Mar; 29(2):101-9. PubMed ID: 18798224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alteration in the biliary and urinary excretion of acetaminophen metabolites by nephrotoxicants in rats.
    Seo KW; Choung SY; Park KS; Kim HJ
    Res Commun Mol Pathol Pharmacol; 1997 Mar; 95(3):305-17. PubMed ID: 9144837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of fructose-induced hypertriglyceridemia on hepatorenal toxicity of acetaminophen in rats. II. Role of enhancement of fructose metabolism and overproduction of triglyceride in the liver and kidney on hepatorenal toxicity of acetaminophen.
    Ishida K; Sakazume M; Hirai N; Ikegami H; Sakai T; Doi K
    Exp Toxicol Pathol; 1997 Feb; 49(1-2):39-46. PubMed ID: 9085072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transport, metabolism, and hepatotoxicity of flutamide, drug-drug interaction with acetaminophen involving phase I and phase II metabolites.
    Kostrubsky SE; Strom SC; Ellis E; Nelson SD; Mutlib AE
    Chem Res Toxicol; 2007 Oct; 20(10):1503-12. PubMed ID: 17900172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Loss of CYP2E1 and CYP1A2 activity as a function of acetaminophen dose: relation to toxicity.
    Snawder JE; Roe AL; Benson RW; Roberts DW
    Biochem Biophys Res Commun; 1994 Aug; 203(1):532-9. PubMed ID: 8074700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. S-(1,2,2-trichlorovinyl)-L-cysteine sulfoxide, a reactive metabolite of S-(1,2,2-Trichlorovinyl)-L-cysteine formed in rat liver and kidney microsomes, is a potent nephrotoxicant.
    Elfarra AA; Krause RJ
    J Pharmacol Exp Ther; 2007 Jun; 321(3):1095-101. PubMed ID: 17347324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contrasting changes in phase I and phase II metabolism of acetaminophen in male mice pretreated with carbon tetrachloride.
    Yim HK; Jung YS; Kim SY; Kim YC
    Basic Clin Pharmacol Toxicol; 2006 Feb; 98(2):225-30. PubMed ID: 16445600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Artemisia pallens alleviates acetaminophen induced toxicity via modulation of endogenous biomarkers.
    Honmore V; Kandhare A; Zanwar AA; Rojatkar S; Bodhankar S; Natu A
    Pharm Biol; 2015 Apr; 53(4):571-81. PubMed ID: 25339313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Taurine protects acetaminophen-induced oxidative damage in mice kidney through APAP urinary excretion and CYP2E1 inactivation.
    Das J; Ghosh J; Manna P; Sil PC
    Toxicology; 2010 Feb; 269(1):24-34. PubMed ID: 20067817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acetaminophen nephrotoxicity in the CD-1 mouse. II. Protection by probenecid and AT-125 without diminution of renal covalent binding.
    Emeigh Hart SG; Wyand DS; Khairallah EA; Cohen SD
    Toxicol Appl Pharmacol; 1996 Jan; 136(1):161-9. PubMed ID: 8560470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential roles of hepatic heat shock protein 25 and 70i in protection of mice against acetaminophen-induced liver injury.
    Sumioka I; Matsura T; Kai M; Yamada K
    Life Sci; 2004 Apr; 74(20):2551-61. PubMed ID: 15010265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.