These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 17126730)

  • 21. Genetic screen for factors mediating PIN polarization in gravistimulated Arabidopsis thaliana hypocotyls.
    Rakusová H; Han H; Valošek P; Friml J
    Plant J; 2019 Jun; 98(6):1048-1059. PubMed ID: 30821050
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rapid redistribution of auxin-regulated RNAs during gravitropism.
    McClure BA; Guilfoyle T
    Science; 1989 Jan; 243():91-3. PubMed ID: 11540631
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Induction of myrosinase gene expression and myrosinase activity in radish hypocotyls by phototropic stimulation.
    Yamada K; Hasegawa T; Minami E; Shibuya N; Kosemura S; Yamamura S; Hasegawa K
    J Plant Physiol; 2003 Mar; 160(3):255-9. PubMed ID: 12749082
    [TBL] [Abstract][Full Text] [Related]  

  • 24. LAZY Genes Mediate the Effects of Gravity on Auxin Gradients and Plant Architecture.
    Yoshihara T; Spalding EP
    Plant Physiol; 2017 Oct; 175(2):959-969. PubMed ID: 28821594
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hypocotyl growth orientation in blue light is determined by phytochrome A inhibition of gravitropism and phototropin promotion of phototropism.
    Lariguet P; Fankhauser C
    Plant J; 2004 Dec; 40(5):826-34. PubMed ID: 15546364
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Gravitropism in higher plant shoots. V. Changing sensitivity to auxin.
    Salisbury FB; Gillespie L; Rorabaugh P
    Plant Physiol; 1988; 88(4):1186-94. PubMed ID: 11537435
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Disruption of the actin cytoskeleton results in the promotion of gravitropism in inflorescence stems and hypocotyls of Arabidopsis.
    Yamamoto K; Kiss JZ
    Plant Physiol; 2002 Feb; 128(2):669-81. PubMed ID: 11842170
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Polarization of PIN3-dependent auxin transport for hypocotyl gravitropic response in Arabidopsis thaliana.
    Rakusová H; Gallego-Bartolomé J; Vanstraelen M; Robert HS; Alabadí D; Blázquez MA; Benková E; Friml J
    Plant J; 2011 Sep; 67(5):817-26. PubMed ID: 21569134
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Isolation and identification of a new growth inhibitor, raphanusanin, from radish seedlings and its role in light inhibition of hypocotyl growth.
    Hasegawa K; Shiihara S; Iwagawa T; Hase T
    Plant Physiol; 1982 Aug; 70(2):626-8. PubMed ID: 16662545
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gravitropism in higher plant shoots. VI. Changing sensitivity to auxin in gravistimulated soybean hypocotyls.
    Rorabaugh PA; Salisbury FB
    Plant Physiol; 1989; 91(4):1329-38. PubMed ID: 11537457
    [TBL] [Abstract][Full Text] [Related]  

  • 31. SGR1, SGR2, SGR3: novel genetic loci involved in shoot gravitropism in Arabidopsis thaliana.
    Fukaki H; Fujisawa H; Tasaka M
    Plant Physiol; 1996 Mar; 110(3):945-55. PubMed ID: 8819871
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phototropism in Hypocotyls of Radish : III. Influence of Unilateral or Bilateral Illumination of Various Light Intensities on Phototropism and Distribution of cis- and trans-Raphanusanins and Raphanusamide.
    Noguchi H; Hasegawa K
    Plant Physiol; 1987 Mar; 83(3):672-5. PubMed ID: 16665305
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Brassinosteroids Influence Arabidopsis Hypocotyl Graviresponses through Changes in Mannans and Cellulose.
    Somssich M; Vandenbussche F; Ivakov A; Funke N; Ruprecht C; Vissenberg K; VanDer Straeten D; Persson S; Suslov D
    Plant Cell Physiol; 2021 Sep; 62(4):678-692. PubMed ID: 33570567
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Light-stabilized GIL1 suppresses PIN3 activity to inhibit hypocotyl gravitropism.
    Wang X; Yuan Y; Charrier L; Deng Z; Geisler M; Deng XW; Chen H
    J Integr Plant Biol; 2024 Jul; ():. PubMed ID: 38990128
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reduced gravitropism in hypocotyls of starch-deficient mutants of Arabidopsis.
    Kiss JZ; Guisinger MM; Miller AJ; Stackhouse KS
    Plant Cell Physiol; 1997 May; 38(5):518-25. PubMed ID: 9210329
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluation of ethylene as a mediator of gravitropism by tomato hypocotyls.
    Harrison MA; Pickard BG
    Plant Physiol; 1986; 80(2):592-5. PubMed ID: 11539038
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Raphanusanin-induced genes and the characterization of RsCSN3, a raphanusanin-induced gene in etiolated radish hypocotyls.
    Moehninsi ; Yamada K; Hasegawa T; Shigemori H
    Phytochemistry; 2008 Nov; 69(16):2781-92. PubMed ID: 18952246
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sucrose and Mannans Affect Arabidopsis Shoot Gravitropism at the Cell Wall Level.
    Pozhvanov G; Suslov D
    Plants (Basel); 2024 Jan; 13(2):. PubMed ID: 38256762
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Differential accumulation of the mRNA of the auxin-repressed gene CsGRP1 and the auxin-induced peg formation during gravimorphogenesis of cucumber seedlings.
    Shimizu M; Suzuki K; Miyazawa Y; Fujii N; Takahashi H
    Planta; 2006 Dec; 225(1):13-22. PubMed ID: 16773375
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Gravitropic plant growth regulation and ethylene: an unsought cardinal coordinate for a disused model.
    Edelmann HG; Roth U
    Protoplasma; 2006 Dec; 229(2-4):183-91. PubMed ID: 17180500
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.