BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 17126925)

  • 1. Relaxation induced by N-terminal fragments of chromogranin A in mouse gastric preparations.
    Amato A; Serio R; Mulè F
    Regul Pept; 2007 Mar; 139(1-3):90-5. PubMed ID: 17126925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibitory influence of chromogranin A N-terminal fragment (vasostatin-1) on the spontaneous contractions of rat proximal colon.
    Amato A; Corti A; Serio R; Mulè F
    Regul Pept; 2005 Aug; 130(1-2):42-7. PubMed ID: 15869818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional evidence for different roles of GABAA and GABAB receptors in modulating mouse gastric tone.
    Rotondo A; Serio R; Mulè F
    Neuropharmacology; 2010 Jun; 58(7):1033-7. PubMed ID: 20080114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interplay between PACAP and NO in mouse ileum.
    Zizzo MG; Mulè F; Serio R
    Neuropharmacology; 2004 Mar; 46(3):449-55. PubMed ID: 14975700
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A role for chromogranin A (4-16), a vasostatin-derived peptide, on human colonic motility. An in vitro study.
    Ghia JE; Crenner F; Rohr S; Meyer C; Metz-Boutigue MH; Aunis D; Angel F
    Regul Pept; 2004 Sep; 121(1-3):31-9. PubMed ID: 15256271
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromogranin A N-terminal fragments vasostatin-1 and the synthetic CGA 7-57 peptide act as cardiostatins on the isolated working frog heart.
    Corti A; Mannarino C; Mazza R; Angelone T; Longhi R; Tota B
    Gen Comp Endocrinol; 2004 Apr; 136(2):217-24. PubMed ID: 15028525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relaxant effects of flavonoids on the mouse isolated stomach: structure-activity relationships.
    Amira S; Rotondo A; Mulè F
    Eur J Pharmacol; 2008 Dec; 599(1-3):126-30. PubMed ID: 18840426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitrergic and purinergic interplay in inhibitory transmission in rat gastric fundus.
    Vetri T; Bonvissuto F; Marino A; Postorino A
    Auton Autacoid Pharmacol; 2007 Jul; 27(3):151-7. PubMed ID: 17584445
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A1 receptors mediate adenosine inhibitory effects in mouse ileum via activation of potassium channels.
    Zizzo MG; Bonomo A; Belluardo N; Mulè F; Serio R
    Life Sci; 2009 May; 84(21-22):772-8. PubMed ID: 19324061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gastric relaxation induced by apigenin and quercetin: analysis of the mechanism of action.
    Rotondo A; Serio R; Mulè F
    Life Sci; 2009 Jul; 85(1-2):85-90. PubMed ID: 19427869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms for modulation of mouse gastrointestinal motility by proteinase-activated receptor (PAR)-1 and -2 in vitro.
    Sekiguchi F; Hasegawa N; Inoshita K; Yonezawa D; Inoi N; Kanke T; Saito N; Kawabata A
    Life Sci; 2006 Jan; 78(9):950-7. PubMed ID: 16188279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of sodium fluoride on the mechanical activity in mouse gastric preparations.
    Amira S; Mulè F
    Can J Physiol Pharmacol; 2005 Apr; 83(4):367-73. PubMed ID: 15877111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role for NK(1) and NK(2) receptors in the motor activity in mouse colon.
    Mulè F; Amato A; Serio R
    Eur J Pharmacol; 2007 Sep; 570(1-3):196-202. PubMed ID: 17597603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of vasostatins, the chromogranin A-derived peptides, on the working heart of the eel (Anguilla anguilla): negative inotropy and mechanism of action.
    Imbrogno S; Angelone T; Corti A; Adamo C; Helle KB; Tota B
    Gen Comp Endocrinol; 2004 Oct; 139(1):20-8. PubMed ID: 15474532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of natural vasostatin-containing peptides in rat heart.
    Glattard E; Angelone T; Strub JM; Corti A; Aunis D; Tota B; Metz-Boutigue MH; Goumon Y
    FEBS J; 2006 Jul; 273(14):3311-21. PubMed ID: 16857014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interstitial cells of Cajal and adaptive relaxation in the mouse stomach.
    Dixit D; Zarate N; Liu LW; Boreham DR; Huizinga JD
    Am J Physiol Gastrointest Liver Physiol; 2006 Dec; 291(6):G1129-36. PubMed ID: 16891301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional evidence for purinergic inhibitory neuromuscular transmission in the mouse internal anal sphincter.
    McDonnell B; Hamilton R; Fong M; Ward SM; Keef KD
    Am J Physiol Gastrointest Liver Physiol; 2008 Apr; 294(4):G1041-51. PubMed ID: 18308858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Involvements of PHI-nitric oxide and PACAP-BK channel in the sustained relaxation of mouse gastric fundus.
    Hagi K; Azuma YT; Nakajima H; Shintani N; Hashimoto H; Baba A; Takeuchi T
    Eur J Pharmacol; 2008 Aug; 590(1-3):80-6. PubMed ID: 18602629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for a modulatory role of orexin A on the nitrergic neurotransmission in the mouse gastric fundus.
    Baccari MC; Bani D; Calamai F
    Regul Pept; 2009 Apr; 154(1-3):54-9. PubMed ID: 19150469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of a chromogranin-derived peptide (CgA 47-66) in the writhing nociceptive response induced by acetic acid in rats.
    Ghia JE; Crenner F; Metz-Boutigue MH; Aunis D; Angel F
    Regul Pept; 2004 Jul; 119(3):199-207. PubMed ID: 15120481
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.