These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 17127113)

  • 1. Fluorine-substituted hydroxyapatite scaffolds hydrothermally grown from aragonitic cuttlefish bones.
    Kannan S; Rocha JH; Agathopoulos S; Ferreira JM
    Acta Biomater; 2007 Mar; 3(2):243-9. PubMed ID: 17127113
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrothermal growth of hydroxyapatite scaffolds from aragonitic cuttlefish bones.
    Rocha JH; Lemos AF; Agathopoulos S; Kannan S; Valério P; Ferreira JM
    J Biomed Mater Res A; 2006 Apr; 77(1):160-8. PubMed ID: 16392140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydroxyapatite formation from cuttlefish bones: kinetics.
    Ivankovic H; Tkalcec E; Orlic S; Ferrer GG; Schauperl Z
    J Mater Sci Mater Med; 2010 Oct; 21(10):2711-22. PubMed ID: 20567885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rietveld refinements and spectroscopic structural studies of a Na-free carbonate apatite made by hydrolysis of monetite.
    Wilson RM; Dowker SE; Elliott JC
    Biomaterials; 2006 Sep; 27(27):4682-92. PubMed ID: 16750850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mineralisation of chitosan scaffolds with nano-apatite formation by double diffusion technique.
    Manjubala I; Scheler S; Bössert J; Jandt KD
    Acta Biomater; 2006 Jan; 2(1):75-84. PubMed ID: 16701861
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scaffolds for bone restoration from cuttlefish.
    Rocha JH; Lemos AF; Agathopoulos S; Valério P; Kannan S; Oktar FN; Ferreira JM
    Bone; 2005 Dec; 37(6):850-7. PubMed ID: 16153899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro hydroxyapatite forming ability and dissolution of tobermorite nanofibers.
    Lin K; Chang J; Cheng R
    Acta Biomater; 2007 Mar; 3(2):271-6. PubMed ID: 17234465
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The induction of bone formation by coral-derived calcium carbonate/hydroxyapatite constructs.
    Ripamonti U; Crooks J; Khoali L; Roden L
    Biomaterials; 2009 Mar; 30(7):1428-39. PubMed ID: 19081131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective protein adsorption and blood compatibility of hydroxy-carbonate apatites.
    Takemoto S; Kusudo Y; Tsuru K; Hayakawa S; Osaka A; Takashima S
    J Biomed Mater Res A; 2004 Jun; 69(3):544-51. PubMed ID: 15127401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrothermal synthesis and thermal evolution of carbonate-fluorhydroxyapatite scaffold from cuttlefish bones.
    Tkalčec E; Popović J; Orlić S; Milardović S; Ivanković H
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():578-86. PubMed ID: 25063156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of ultra-fine bioresorbable carbonated hydroxyapatite.
    Murugan R; Ramakrishna S
    Acta Biomater; 2006 Mar; 2(2):201-6. PubMed ID: 16701878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of calcium ion deposition on apatite-inducing ability of porous titanium for biomedical applications.
    Chen XB; Li YC; Du Plessis J; Hodgson PD; Wen C
    Acta Biomater; 2009 Jun; 5(5):1808-20. PubMed ID: 19223253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of highly porous hydroxyapatite from cuttlefish bone.
    Ivankovic H; Gallego Ferrer G; Tkalcec E; Orlic S; Ivankovic M
    J Mater Sci Mater Med; 2009 May; 20(5):1039-46. PubMed ID: 19132509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of synthetic apatites by solid-state reactions.
    Fazan F; Shahida KB
    Med J Malaysia; 2004 May; 59 Suppl B():69-70. PubMed ID: 15468823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-organization of hydroxyapatite nanorods through oriented attachment.
    Chen JD; Wang YJ; Wei K; Zhang SH; Shi XT
    Biomaterials; 2007 May; 28(14):2275-80. PubMed ID: 17296220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Local structure of channel ions in carbonate apatite.
    Fleet ME; Liu X
    Biomaterials; 2005 Dec; 26(36):7548-54. PubMed ID: 16009419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics of hydrothermal crystallization under saturated steam pressure and the self-healing effect by nanocrystallite for hydroxyapatite coatings.
    Yang CW; Lui TS
    Acta Biomater; 2009 Sep; 5(7):2728-37. PubMed ID: 19376760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure refinements of the 2H and 2M pseudomorphs of ferric carbonate-hydroxyapatite.
    Low HR; Ritter C; White TJ
    Dalton Trans; 2010 Jul; 39(28):6488-95. PubMed ID: 20552124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural analysis of a series of strontium-substituted apatites.
    O'Donnell MD; Fredholm Y; de Rouffignac A; Hill RG
    Acta Biomater; 2008 Sep; 4(5):1455-64. PubMed ID: 18502710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomimetic apatite coatings--carbonate substitution and preferred growth orientation.
    Müller L; Conforto E; Caillard D; Müller FA
    Biomol Eng; 2007 Nov; 24(5):462-6. PubMed ID: 17855164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.