These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 17127347)

  • 1. MutS homologues hMSH4 and hMSH5: diverse functional implications in humans.
    Her C; Zhao N; Wu X; Tompkins JD
    Front Biosci; 2007 Jan; 12():905-11. PubMed ID: 17127347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of hMSH4-hMSH5 heterocomplex is a prerequisite for subsequent GPS2 recruitment.
    Lee TH; Yi W; Griswold MD; Zhu F; Her C
    DNA Repair (Amst); 2006 Jan; 5(1):32-42. PubMed ID: 16122992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MutS Homologues hMSH4 and hMSH5: Genetic Variations, Functions, and Implications in Human Diseases.
    Clark N; Wu X; Her C
    Curr Genomics; 2013 Apr; 14(2):81-90. PubMed ID: 24082819
    [TBL] [Abstract][Full Text] [Related]  

  • 4. hMSH4-hMSH5 recognizes Holliday Junctions and forms a meiosis-specific sliding clamp that embraces homologous chromosomes.
    Snowden T; Acharya S; Butz C; Berardini M; Fishel R
    Mol Cell; 2004 Aug; 15(3):437-51. PubMed ID: 15304223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human MutS homologue MSH4 physically interacts with von Hippel-Lindau tumor suppressor-binding protein 1.
    Her C; Wu X; Griswold MD; Zhou F
    Cancer Res; 2003 Feb; 63(4):865-72. PubMed ID: 12591739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MutS homologue hMSH5: recombinational DSB repair and non-synonymous polymorphic variants.
    Wu X; Xu Y; Feng K; Tompkins JD; Her C
    PLoS One; 2013; 8(9):e73284. PubMed ID: 24023853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two variants of MutS homolog hMSH5: prevalence in humans and effects on protein interaction.
    Yi W; Wu X; Lee TH; Doggett NA; Her C
    Biochem Biophys Res Commun; 2005 Jul; 332(2):524-32. PubMed ID: 15907804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. hMSH4-hMSH5 adenosine nucleotide processing and interactions with homologous recombination machinery.
    Snowden T; Shim KS; Schmutte C; Acharya S; Fishel R
    J Biol Chem; 2008 Jan; 283(1):145-154. PubMed ID: 17977839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA damage induced MutS homologue hMSH4 acetylation.
    Chu YL; Wu X; Xu J; Watts JL; Her C
    Int J Mol Sci; 2013 Oct; 14(10):20966-82. PubMed ID: 24145748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MutS homologue hMSH4: interaction with eIF3f and a role in NHEJ-mediated DSB repair.
    Chu YL; Wu X; Xu Y; Her C
    Mol Cancer; 2013 Jun; 12():51. PubMed ID: 23725059
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alignment of Homologous Chromosomes and Effective Repair of Programmed DNA Double-Strand Breaks during Mouse Meiosis Require the Minichromosome Maintenance Domain Containing 2 (MCMDC2) Protein.
    Finsterbusch F; Ravindranathan R; Dereli I; Stanzione M; Tränkner D; Tóth A
    PLoS Genet; 2016 Oct; 12(10):e1006393. PubMed ID: 27760146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Meiotic recombination: sealing the partnership at the junction.
    Kunz C; Schär P
    Curr Biol; 2004 Nov; 14(22):R962-4. PubMed ID: 15556855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MutS homologue hMSH5: role in cisplatin-induced DNA damage response.
    Tompkins JD; Wu X; Her C
    Mol Cancer; 2012 Mar; 11():10. PubMed ID: 22401567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The DNA mismatch-repair MLH3 protein interacts with MSH4 in meiotic cells, supporting a role for this MutL homolog in mammalian meiotic recombination.
    Santucci-Darmanin S; Neyton S; Lespinasse F; Saunières A; Gaudray P; Paquis-Flucklinger V
    Hum Mol Genet; 2002 Jul; 11(15):1697-706. PubMed ID: 12095912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. hMSH5: a human MutS homologue that forms a novel heterodimer with hMSH4 and is expressed during spermatogenesis.
    Bocker T; Barusevicius A; Snowden T; Rasio D; Guerrette S; Robbins D; Schmidt C; Burczak J; Croce CM; Copeland T; Kovatich AJ; Fishel R
    Cancer Res; 1999 Feb; 59(4):816-22. PubMed ID: 10029069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mismatch repair proteins: key regulators of genetic recombination.
    Surtees JA; Argueso JL; Alani E
    Cytogenet Genome Res; 2004; 107(3-4):146-59. PubMed ID: 15467360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Current topics in DNA double-strand break repair.
    Kobayashi J; Iwabuchi K; Miyagawa K; Sonoda E; Suzuki K; Takata M; Tauchi H
    J Radiat Res; 2008 Mar; 49(2):93-103. PubMed ID: 18285658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of DNA double-strand break repair pathway choice.
    Shrivastav M; De Haro LP; Nickoloff JA
    Cell Res; 2008 Jan; 18(1):134-47. PubMed ID: 18157161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human Exonuclease 1 (EXO1) Regulatory Functions in DNA Replication with Putative Roles in Cancer.
    Keijzers G; Bakula D; Petr MA; Madsen NGK; Teklu A; Mkrtchyan G; Osborne B; Scheibye-Knudsen M
    Int J Mol Sci; 2018 Dec; 20(1):. PubMed ID: 30585186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physical and functional interaction between hMSH5 and c-Abl.
    Yi W; Lee TH; Tompkins JD; Zhu F; Wu X; Her C
    Cancer Res; 2006 Jan; 66(1):151-8. PubMed ID: 16397227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.