These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
86 related articles for article (PubMed ID: 17127389)
1. Hormone treatment enhances WT1 activation of Renilla luciferase constructs in LNCaP cells. Hanson J; Reese J; Gorman J; Cash J; Fraizer G Front Biosci; 2007 Jan; 12():1387-94. PubMed ID: 17127389 [TBL] [Abstract][Full Text] [Related]
2. Regulation of vascular endothelial growth factor, VEGF, gene promoter by the tumor suppressor, WT1. Hanson J; Gorman J; Reese J; Fraizer G Front Biosci; 2007 Jan; 12():2279-90. PubMed ID: 17127464 [TBL] [Abstract][Full Text] [Related]
3. Transcriptional regulation of the androgen signaling pathway by the Wilms' tumor suppressor gene WT1. Zaia A; Fraizer GC; Piantanelli L; Saunders GF Anticancer Res; 2001; 21(1A):1-10. PubMed ID: 11299720 [TBL] [Abstract][Full Text] [Related]
4. Vascular endothelial growth factor (VEGF) is suppressed in WT1-transfected LNCaP cells. Graham K; Li W; Williams BR; Fraizer G Gene Expr; 2006; 13(1):1-14. PubMed ID: 16572586 [TBL] [Abstract][Full Text] [Related]
5. VEGF transcription and mRNA stability are altered by WT1 not DDS(R384W) expression in LNCaP cells. Cash J; Korchnak A; Gorman J; Tandon Y; Fraizer G Oncol Rep; 2007 Jun; 17(6):1413-9. PubMed ID: 17487399 [TBL] [Abstract][Full Text] [Related]
6. False responses of Renilla luciferase reporter control to nuclear receptor TR4. Zhang D; Atlasi SS; Patel KK; Zhuang Z; Heaney AP Mol Cell Biochem; 2017 Jun; 430(1-2):139-147. PubMed ID: 28210900 [TBL] [Abstract][Full Text] [Related]
7. Inhibitory effects associated with use of modified Photinus pyralis and Renilla reniformis luciferase vectors in dual reporter assays and implications for analysis of ISGs. Ghazawi I; Cutler SJ; Low P; Mellick AS; Ralph SJ J Interferon Cytokine Res; 2005 Feb; 25(2):92-102. PubMed ID: 15695930 [TBL] [Abstract][Full Text] [Related]
8. Androgen responsiveness of Renilla luciferase reporter vectors is promoter, transgene, and cell line dependent. Mulholland DJ; Cox M; Read J; Rennie P; Nelson C Prostate; 2004 May; 59(2):115-9. PubMed ID: 15042611 [TBL] [Abstract][Full Text] [Related]
9. Androgen stimulates matrix metalloproteinase-2 expression in human prostate cancer. Liao X; Thrasher JB; Pelling J; Holzbeierlein J; Sang QX; Li B Endocrinology; 2003 May; 144(5):1656-63. PubMed ID: 12697668 [TBL] [Abstract][Full Text] [Related]
10. Androgen and taxol cause cell type-specific alterations of centrosome and DNA organization in androgen-responsive LNCaP and androgen-independent DU145 prostate cancer cells. Schatten H; Ripple M; Balczon R; Weindruch R; Chakrabarti A; Taylor M; Hueser CN J Cell Biochem; 2000 Jan; 76(3):463-77. PubMed ID: 10649443 [TBL] [Abstract][Full Text] [Related]
11. Suppression of prostate tumor cell growth in vivo by WT1, the Wilms' tumor suppressor gene. Fraizer G; Leahy R; Priyadarshini S; Graham K; Delacerda J; Diaz M Int J Oncol; 2004 Mar; 24(3):461-71. PubMed ID: 14767530 [TBL] [Abstract][Full Text] [Related]
12. Androgen receptor signalling: comparative analysis of androgen response elements and implication of heat-shock protein 90 and 14-3-3eta. Haendler B; Schüttke I; Schleuning WD Mol Cell Endocrinol; 2001 Feb; 173(1-2):63-73. PubMed ID: 11223178 [TBL] [Abstract][Full Text] [Related]
13. Promoter deletion analysis using a dual-luciferase reporter system. Xu YZ; Kanagaratham C; Jancik S; Radzioch D Methods Mol Biol; 2013; 977():79-93. PubMed ID: 23436355 [TBL] [Abstract][Full Text] [Related]
14. Chromosomal localization, structure, and regulation of the UGT2B17 gene, encoding a C19 steroid metabolizing enzyme. Beaulieu M; Lévesque E; Tchernof A; Beatty BG; Bélanger A; Hum DW DNA Cell Biol; 1997 Oct; 16(10):1143-54. PubMed ID: 9364925 [TBL] [Abstract][Full Text] [Related]
15. Interleukin 6 activates androgen receptor-mediated gene expression through a signal transducer and activator of transcription 3-dependent pathway in LNCaP prostate cancer cells. Chen T; Wang LH; Farrar WL Cancer Res; 2000 Apr; 60(8):2132-5. PubMed ID: 10786674 [TBL] [Abstract][Full Text] [Related]
16. Effect of antioxidants on androgen-induced AP-1 and NF-kappaB DNA-binding activity in prostate carcinoma cells. Ripple MO; Henry WF; Schwarze SR; Wilding G; Weindruch R J Natl Cancer Inst; 1999 Jul; 91(14):1227-32. PubMed ID: 10413424 [TBL] [Abstract][Full Text] [Related]
17. Androgens down-regulate the expression of the human homologue of paternally expressed gene-3 in the prostatic adenocarcinoma cell line LNCaP. Ulrix W; Swinnen JV; Heyns W; Verhoeven G Mol Cell Endocrinol; 1999 Sep; 155(1-2):69-76. PubMed ID: 10580840 [TBL] [Abstract][Full Text] [Related]
18. Androgens inhibit the proliferation of a variant of the human prostate cancer cell line LNCaP. Joly-Pharaboz MO; Soave MC; Nicolas B; Mebarki F; Renaud M; Foury O; Morel Y; Andre JG J Steroid Biochem Mol Biol; 1995 Oct; 55(1):67-76. PubMed ID: 7577722 [TBL] [Abstract][Full Text] [Related]
19. The zinc finger domain of Wilms' tumor 1 suppressor gene (WT1) behaves as a dominant negative, leading to abrogation of WT1 oncogenic potential in breast cancer cells. Han Y; San-Marina S; Yang L; Khoury H; Minden MD Breast Cancer Res; 2007; 9(4):R43. PubMed ID: 17634147 [TBL] [Abstract][Full Text] [Related]
20. Androgen-induced oxidative stress in human LNCaP prostate cancer cells is associated with multiple mitochondrial modifications. Ripple MO; Hagopian K; Oberley TD; Schatten H; Weindruch R Antioxid Redox Signal; 1999; 1(1):71-81. PubMed ID: 11225734 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]