These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 17127647)

  • 1. Towards automatic skill evaluation: detection and segmentation of robot-assisted surgical motions.
    Lin HC; Shafran I; Yuh D; Hager GD
    Comput Aided Surg; 2006 Sep; 11(5):220-30. PubMed ID: 17127647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic detection and segmentation of robot-assisted surgical motions.
    Lin HC; Shafran I; Murphy TE; Okamura AM; Yuh DD; Hager GD
    Med Image Comput Comput Assist Interv; 2005; 8(Pt 1):802-10. PubMed ID: 16685920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advanced da Vinci Surgical System simulator for surgeon training and operation planning.
    Sun LW; Van Meer F; Schmid J; Bailly Y; Thakre AA; Yeung CK
    Int J Med Robot; 2007 Sep; 3(3):245-51. PubMed ID: 17576641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generalized approach for modeling minimally invasive surgery as a stochastic process using a discrete Markov model.
    Rosen J; Brown JD; Chang L; Sinanan MN; Hannaford B
    IEEE Trans Biomed Eng; 2006 Mar; 53(3):399-413. PubMed ID: 16532766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Robotic-assisted operations in digestive and endocrine surgery using Da Vinci system].
    Bresler L
    Ann Chir; 2006 May; 131(5):299-301. PubMed ID: 16630532
    [No Abstract]   [Full Text] [Related]  

  • 6. A six-degree-of-freedom passive arm with dynamic constraints (PADyC) for cardiac surgery application: preliminary experiments.
    Schneider O; Troccaz J
    Comput Aided Surg; 2001; 6(6):340-51. PubMed ID: 11954065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robotic surgery setup simulation with the integration of inverse-kinematics computation and medical imaging.
    Hayashibe M; Suzuki N; Hashizume M; Konishi K; Hattori A
    Comput Methods Programs Biomed; 2006 Jul; 83(1):63-72. PubMed ID: 16828195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surgical gesture classification from video and kinematic data.
    Zappella L; BĂ©jar B; Hager G; Vidal R
    Med Image Anal; 2013 Oct; 17(7):732-45. PubMed ID: 23706754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic recognition of surgical motions using statistical modeling for capturing variability.
    Reiley CE; Lin HC; Varadarajan B; Vagvolgyi B; Khudanpur S; Yuh DD; Hager GD
    Stud Health Technol Inform; 2008; 132():396-401. PubMed ID: 18391329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Providing metrics and performance feedback in a surgical simulator.
    Sewell C; Morris D; Blevins NH; Dutta S; Agrawal S; Barbagli F; Salisbury K
    Comput Aided Surg; 2008 Mar; 13(2):63-81. PubMed ID: 18317956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robotic abdominal surgery.
    Hanly EJ; Talamini MA
    Am J Surg; 2004 Oct; 188(4A Suppl):19S-26S. PubMed ID: 15476648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Patient specific surgical simulator for the evaluation of the movability of bimanual robotic arms.
    Moglia A; Turini G; Ferrari V; Ferrari M; Mosca F
    Stud Health Technol Inform; 2011; 163():379-85. PubMed ID: 21335823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving robot arm control for safe and robust haptic cooperation in orthopaedic procedures.
    Cruces RA; Wahrburg J
    Int J Med Robot; 2007 Dec; 3(4):316-22. PubMed ID: 17948919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Future aspect of robotic surgery].
    Shimada M; Sugimachi K
    Fukuoka Igaku Zasshi; 2002 Apr; 93(4):57-63. PubMed ID: 12048908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preoperative planning system for surgical robotics setup with kinematics and haptics.
    Hayashibe M; Suzuki N; Hashizume M; Kakeji Y; Konishi K; Suzuki S; Hattori A
    Int J Med Robot; 2005 Jan; 1(2):76-85. PubMed ID: 17518381
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of IQ, computer-gaming skills, general dexterity, and laparoscopic experience on performance with the da Vinci surgical system.
    Hagen ME; Wagner OJ; Inan I; Morel P
    Int J Med Robot; 2009 Sep; 5(3):327-31. PubMed ID: 19455549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robotics, telesurgery and telementoring--their position in modern urological laparoscopy.
    Rassweiler J; Frede T
    Arch Esp Urol; 2002; 55(6):610-28. PubMed ID: 12224160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimizing port placement for robot-assisted minimally invasive cardiac surgery.
    Trejos AL; Patel RV; Ross I; Kiaii B
    Int J Med Robot; 2007 Dec; 3(4):355-64. PubMed ID: 18000946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinematic analysis of motor performance in robot-assisted surgery: a preliminary study.
    Nisky I; Patil S; Hsieh MH; Okamura AM
    Stud Health Technol Inform; 2013; 184():302-8. PubMed ID: 23400175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and testing of a tactile feedback system for robotic surgery.
    Grundfest WS; Culjat MO; King CH; Franco ML; Wottawa C; Lewis CE; Bisley JW; Dutson EP
    Stud Health Technol Inform; 2009; 142():103-8. PubMed ID: 19377124
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.