These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
240 related articles for article (PubMed ID: 17128981)
1. Roles of Tyr13 and Phe219 in the unique substrate specificity of pepsin B. Kageyama T Biochemistry; 2006 Dec; 45(48):14415-26. PubMed ID: 17128981 [TBL] [Abstract][Full Text] [Related]
2. Role of S'1 loop residues in the substrate specificities of pepsin A and chymosin. Kageyama T Biochemistry; 2004 Dec; 43(48):15122-30. PubMed ID: 15568804 [TBL] [Abstract][Full Text] [Related]
3. Characterization of the P2' and P3' specificities of thrombin using fluorescence-quenched substrates and mapping of the subsites by mutagenesis. Le Bonniec BF; Myles T; Johnson T; Knight CG; Tapparelli C; Stone SR Biochemistry; 1996 Jun; 35(22):7114-22. PubMed ID: 8679538 [TBL] [Abstract][Full Text] [Related]
4. Modification of the substrate specificity of porcine pepsin for the enzymatic production of bovine hide gelatin. Galea CA; Dalrymple BP; Kuypers R; Blakeley R Protein Sci; 2000 Oct; 9(10):1947-59. PubMed ID: 11106168 [TBL] [Abstract][Full Text] [Related]
5. Engineering substrate preference in subtilisin: structural and kinetic analysis of a specificity mutant. Ruan B; London V; Fisher KE; Gallagher DT; Bryan PN Biochemistry; 2008 Jun; 47(25):6628-36. PubMed ID: 18507395 [TBL] [Abstract][Full Text] [Related]
6. Structure, molecular evolution, and hydrolytic specificities of largemouth bass pepsins. Miura Y; Suzuki-Matsubara M; Kageyama T; Moriyama A Comp Biochem Physiol B Biochem Mol Biol; 2016 Feb; 192():49-59. PubMed ID: 26627128 [TBL] [Abstract][Full Text] [Related]
7. Engineering of porcine pepsin. Alteration of S1 substrate specificity of pepsin to those of fungal aspartic proteinases by site-directed mutagenesis. Shintani T; Nomura K; Ichishima E J Biol Chem; 1997 Jul; 272(30):18855-61. PubMed ID: 9228062 [TBL] [Abstract][Full Text] [Related]
8. Role of active-site residues of dispersin B, a biofilm-releasing beta-hexosaminidase from a periodontal pathogen, in substrate hydrolysis. Manuel SG; Ragunath C; Sait HB; Izano EA; Kaplan JB; Ramasubbu N FEBS J; 2007 Nov; 274(22):5987-99. PubMed ID: 17949435 [TBL] [Abstract][Full Text] [Related]
9. Engineering of S2 site of aqualysin I; alteration of P2 specificity by excluding P2 side chain. Tanaka T; Matsuzawa H; Ohta T Biochemistry; 1998 Dec; 37(50):17402-7. PubMed ID: 9860855 [TBL] [Abstract][Full Text] [Related]
10. Redesigning the PheA domain of gramicidin synthetase leads to a new understanding of the enzyme's mechanism and selectivity. Stevens BW; Lilien RH; Georgiev I; Donald BR; Anderson AC Biochemistry; 2006 Dec; 45(51):15495-504. PubMed ID: 17176071 [TBL] [Abstract][Full Text] [Related]
11. [Determination of activity of aspartic proteinases by cleavage of new chromogenic substrates]. Litvinova OV; Balandina GN; Stepanov VM Bioorg Khim; 1998 Mar; 24(3):175-8. PubMed ID: 9612558 [TBL] [Abstract][Full Text] [Related]
12. Evolutionarily conserved functional mechanics across pepsin-like and retroviral aspartic proteases. Cascella M; Micheletti C; Rothlisberger U; Carloni P J Am Chem Soc; 2005 Mar; 127(11):3734-42. PubMed ID: 15771507 [TBL] [Abstract][Full Text] [Related]
13. The pH dependence of the hydrolysis of chromogenic substrates of the type, Lys-Pro-Xaa-Yaa-Phe-(NO2)Phe-Arg-Leu, by selected aspartic proteinases: evidence for specific interactions in subsites S3 and S2. Dunn BM; Valler MJ; Rolph CE; Foundling SI; Jimenez M; Kay J Biochim Biophys Acta; 1987 Jun; 913(2):122-30. PubMed ID: 3109484 [TBL] [Abstract][Full Text] [Related]
14. Novel inhibitor for prolyl tripeptidyl aminopeptidase from Porphyromonas gingivalis and details of substrate-recognition mechanism. Xu Y; Nakajima Y; Ito K; Zheng H; Oyama H; Heiser U; Hoffmann T; Gärtner UT; Demuth HU; Yoshimoto T J Mol Biol; 2008 Jan; 375(3):708-19. PubMed ID: 18042490 [TBL] [Abstract][Full Text] [Related]
15. N-terminal modifications increase the neutral-pH stability of pepsin. Bryksa BC; Tanaka T; Yada RY Biochemistry; 2003 Nov; 42(45):13331-8. PubMed ID: 14609343 [TBL] [Abstract][Full Text] [Related]
16. The role of Arg-96 in Danio rerio creatine kinase in substrate recognition and active center configuration. Uda K; Kuwasaki A; Shima K; Matsumoto T; Suzuki T Int J Biol Macromol; 2009 Jun; 44(5):413-8. PubMed ID: 19428475 [TBL] [Abstract][Full Text] [Related]
17. Structure and mechanism of action of an inverting mutant sialidase. Newstead S; Watson JN; Knoll TL; Bennet AJ; Taylor G Biochemistry; 2005 Jun; 44(25):9117-22. PubMed ID: 15966735 [TBL] [Abstract][Full Text] [Related]
18. Purification and characterization of two pepsins from the stomach of pectoral rattail (Coryphaenoides pectoralis). Klomklao S; Kishimura H; Yabe M; Benjakul S Comp Biochem Physiol B Biochem Mol Biol; 2007 Aug; 147(4):682-9. PubMed ID: 17493857 [TBL] [Abstract][Full Text] [Related]
19. Crystal structure of human pepsin and its complex with pepstatin. Fujinaga M; Chernaia MM; Tarasova NI; Mosimann SC; James MN Protein Sci; 1995 May; 4(5):960-72. PubMed ID: 7663352 [TBL] [Abstract][Full Text] [Related]
20. Functional requirements for the optimal catalytic configuration of the AChE active center. Shafferman A; Barak D; Kaplan D; Ordentlich A; Kronman C; Velan B Chem Biol Interact; 2005 Dec; 157-158():123-31. PubMed ID: 16256968 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]