These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
240 related articles for article (PubMed ID: 1712900)
1. Binding sites of the 9- and 14-kilodalton heterodimeric protein subunit of the signal recognition particle (SRP) are contained exclusively in the Alu domain of SRP RNA and contain a sequence motif that is conserved in evolution. Strub K; Moss J; Walter P Mol Cell Biol; 1991 Aug; 11(8):3949-59. PubMed ID: 1712900 [TBL] [Abstract][Full Text] [Related]
2. Assembly of the Alu domain of the signal recognition particle (SRP): dimerization of the two protein components is required for efficient binding to SRP RNA. Strub K; Walter P Mol Cell Biol; 1990 Feb; 10(2):777-84. PubMed ID: 2153922 [TBL] [Abstract][Full Text] [Related]
3. The SRP9/14 subunit of the signal recognition particle (SRP) is present in more than 20-fold excess over SRP in primate cells and exists primarily free but also in complex with small cytoplasmic Alu RNAs. Bovia F; Fornallaz M; Leffers H; Strub K Mol Biol Cell; 1995 Apr; 6(4):471-84. PubMed ID: 7542942 [TBL] [Abstract][Full Text] [Related]
4. The crystal structure of the signal recognition particle Alu RNA binding heterodimer, SRP9/14. Birse DE; Kapp U; Strub K; Cusack S; Aberg A EMBO J; 1997 Jul; 16(13):3757-66. PubMed ID: 9233785 [TBL] [Abstract][Full Text] [Related]
5. Removal of the Alu structural domain from signal recognition particle leaves its protein translocation activity intact. Siegel V; Walter P Nature; 1986 Mar 6-12; 320(6057):81-4. PubMed ID: 2419765 [TBL] [Abstract][Full Text] [Related]
6. The SRP9/14 subunit of the human signal recognition particle binds to a variety of Alu-like RNAs and with higher affinity than its mouse homolog. Bovia F; Wolff N; Ryser S; Strub K Nucleic Acids Res; 1997 Jan; 25(2):318-26. PubMed ID: 9016560 [TBL] [Abstract][Full Text] [Related]
7. The Alu domain homolog of the yeast signal recognition particle consists of an Srp14p homodimer and a yeast-specific RNA structure. Strub K; Fornallaz M; Bui N RNA; 1999 Oct; 5(10):1333-47. PubMed ID: 10573124 [TBL] [Abstract][Full Text] [Related]
8. A highly conserved nucleotide in the Alu domain of SRP RNA mediates translation arrest through high affinity binding to SRP9/14. Chang DY; Newitt JA; Hsu K; Bernstein HD; Maraia RJ Nucleic Acids Res; 1997 Mar; 25(6):1117-22. PubMed ID: 9092618 [TBL] [Abstract][Full Text] [Related]
9. Identification and comparative analysis of components from the signal recognition particle in protozoa and fungi. Rosenblad MA; Zwieb C; Samuelsson T BMC Genomics; 2004 Jan; 5(1):5. PubMed ID: 14720308 [TBL] [Abstract][Full Text] [Related]
10. Hierarchical assembly of the Alu domain of the mammalian signal recognition particle. Weichenrieder O; Stehlin C; Kapp U; Birse DE; Timmins PA; Strub K; Cusack S RNA; 2001 May; 7(5):731-40. PubMed ID: 11350037 [TBL] [Abstract][Full Text] [Related]
11. A truncation in the 14 kDa protein of the signal recognition particle leads to tertiary structure changes in the RNA and abolishes the elongation arrest activity of the particle. Thomas Y; Bui N; Strub K Nucleic Acids Res; 1997 May; 25(10):1920-9. PubMed ID: 9115358 [TBL] [Abstract][Full Text] [Related]
12. The decline in human Alu retroposition was accompanied by an asymmetric decrease in SRP9/14 binding to dimeric Alu RNA and increased expression of small cytoplasmic Alu RNA. Sarrowa J; Chang DY; Maraia RJ Mol Cell Biol; 1997 Mar; 17(3):1144-51. PubMed ID: 9032241 [TBL] [Abstract][Full Text] [Related]
14. Human signal recognition particle (SRP) Alu-associated protein also binds Alu interspersed repeat sequence RNAs. Characterization of human SRP9. Hsu K; Chang DY; Maraia RJ J Biol Chem; 1995 Apr; 270(17):10179-86. PubMed ID: 7730321 [TBL] [Abstract][Full Text] [Related]
15. Conserved tertiary base pairing ensures proper RNA folding and efficient assembly of the signal recognition particle Alu domain. Huck L; Scherrer A; Terzi L; Johnson AE; Bernstein HD; Cusack S; Weichenrieder O; Strub K Nucleic Acids Res; 2004; 32(16):4915-24. PubMed ID: 15383645 [TBL] [Abstract][Full Text] [Related]
16. Structure and assembly of the Alu domain of the mammalian signal recognition particle. Weichenrieder O; Wild K; Strub K; Cusack S Nature; 2000 Nov; 408(6809):167-73. PubMed ID: 11089964 [TBL] [Abstract][Full Text] [Related]
17. Saccharomyces SRP RNA secondary structures: a conserved S-domain and extended Alu-domain. Van Nues RW; Brown JD RNA; 2004 Jan; 10(1):75-89. PubMed ID: 14681587 [TBL] [Abstract][Full Text] [Related]
18. A cellular protein binds B1 and Alu small cytoplasmic RNAs in vitro. Chang DY; Maraia RJ J Biol Chem; 1993 Mar; 268(9):6423-8. PubMed ID: 7681065 [TBL] [Abstract][Full Text] [Related]
19. A Mycoplasma protein homologous to mammalian SRP54 recognizes a highly conserved domain of SRP RNA. Samuelsson T Nucleic Acids Res; 1992 Nov; 20(21):5763-70. PubMed ID: 1280809 [TBL] [Abstract][Full Text] [Related]
20. Mutational analysis of the protein subunits of the signal recognition particle Alu-domain. Bui N; Wolff N; Cusack S; Strub K RNA; 1997 Jul; 3(7):748-63. PubMed ID: 9214658 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]