These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 17129015)

  • 1. Bipolar electrochemical mechanism for the propulsion of catalytic nanomotors in hydrogen peroxide solutions.
    Wang Y; Hernandez RM; Bartlett DJ; Bingham JM; Kline TR; Sen A; Mallouk TE
    Langmuir; 2006 Dec; 22(25):10451-6. PubMed ID: 17129015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Segmented Pt/Ru, Pt/Ni, and Pt/RuNi nanorods as model bifunctional catalysts for methanol oxidation.
    Liu F; Lee JY; Zhou WJ
    Small; 2006 Jan; 2(1):121-8. PubMed ID: 17193567
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Autonomous propulsion of carbon nanotubes powered by a multienzyme ensemble.
    Pantarotto D; Browne WR; Feringa BL
    Chem Commun (Camb); 2008 Apr; (13):1533-5. PubMed ID: 18354790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Autonomous movement of silica and glass micro-objects based on a catalytic molecular propulsion system.
    Stock C; Heureux N; Browne WR; Feringa BL
    Chemistry; 2008; 14(10):3146-53. PubMed ID: 18260068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Motion analysis of self-propelled Pt-silica particles in hydrogen peroxide solutions.
    Ke H; Ye S; Carroll RL; Showalter K
    J Phys Chem A; 2010 May; 114(17):5462-7. PubMed ID: 20387839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic nanomotors: autonomous movement of striped nanorods.
    Paxton WF; Kistler KC; Olmeda CC; Sen A; St Angelo SK; Cao Y; Mallouk TE; Lammert PE; Crespi VH
    J Am Chem Soc; 2004 Oct; 126(41):13424-31. PubMed ID: 15479099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical catalysis of styrene epoxidation with films of MnO(2) nanoparticles and H(2)O(2).
    Espinal L; Suib SL; Rusling JF
    J Am Chem Soc; 2004 Jun; 126(24):7676-82. PubMed ID: 15198615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon-nanotube-induced acceleration of catalytic nanomotors.
    Laocharoensuk R; Burdick J; Wang J
    ACS Nano; 2008 May; 2(5):1069-75. PubMed ID: 19206505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Directed rotational motion of microscale objects using interfacial tension gradients continually generated via catalytic reactions.
    Catchmark JM; Subramanian S; Sen A
    Small; 2005 Feb; 1(2):202-6. PubMed ID: 17193430
    [No Abstract]   [Full Text] [Related]  

  • 10. Transport effects in the oxygen reduction reaction on nanostructured, planar glassy carbon supported Pt/GC model electrodes.
    Schneider A; Colmenares L; Seidel YE; Jusys Z; Wickman B; Kasemo B; Behm RJ
    Phys Chem Chem Phys; 2008 Apr; 10(14):1931-43. PubMed ID: 18368186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxygenic polyoxometalates: a new class of molecular propellers.
    Sartorel A; Truccolo M; Berardi S; Gardan M; Carraro M; Toma FM; Scorrano G; Prato M; Bonchio M
    Chem Commun (Camb); 2011 Feb; 47(6):1716-8. PubMed ID: 21221441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalytic nanomotors: self-propelled sphere dimers.
    Valadares LF; Tao YG; Zacharia NS; Kitaev V; Galembeck F; Kapral R; Ozin GA
    Small; 2010 Feb; 6(4):565-72. PubMed ID: 20108240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic synthesis of neutral H2O2 solutions from O2 and H2 by a fuel cell reaction.
    Yamanaka I; Tazawa S; Murayama T; Ichihashi R; Hanaizumi N
    ChemSusChem; 2008; 1(12):988-92. PubMed ID: 19009583
    [No Abstract]   [Full Text] [Related]  

  • 14. Catalytically induced electrokinetics for motors and micropumps.
    Paxton WF; Baker PT; Kline TR; Wang Y; Mallouk TE; Sen A
    J Am Chem Soc; 2006 Nov; 128(46):14881-8. PubMed ID: 17105298
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Au@Pt nanostructures as oxidase and peroxidase mimetics for use in immunoassays.
    He W; Liu Y; Yuan J; Yin JJ; Wu X; Hu X; Zhang K; Liu J; Chen C; Ji Y; Guo Y
    Biomaterials; 2011 Feb; 32(4):1139-47. PubMed ID: 21071085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrosynthesis of hydrogen peroxide via the reduction of oxygen assisted by power ultrasound.
    González-García J; Banks CE; Sljukić B; Compton RG
    Ultrason Sonochem; 2007 Apr; 14(4):405-12. PubMed ID: 17208503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase onto Au-modified titanium dioxide nanotube arrays.
    Kafi AK; Wu G; Chen A
    Biosens Bioelectron; 2008 Dec; 24(4):566-71. PubMed ID: 18640021
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanorobots: the ultimate wireless self-propelled sensing and actuating devices.
    Sánchez S; Pumera M
    Chem Asian J; 2009 Sep; 4(9):1402-10. PubMed ID: 19621413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Motility of catalytic nanoparticles through self-generated forces.
    Paxton WF; Sen A; Mallouk TE
    Chemistry; 2005 Nov; 11(22):6462-70. PubMed ID: 16052651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solution-cast metal oxide thin film electrocatalysts for oxygen evolution.
    Trotochaud L; Ranney JK; Williams KN; Boettcher SW
    J Am Chem Soc; 2012 Oct; 134(41):17253-61. PubMed ID: 22991896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.