These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
292 related articles for article (PubMed ID: 17129135)
1. Alternative fundamental measure theory for additive hard sphere mixtures. Malijevský A J Chem Phys; 2006 Nov; 125(19):194519. PubMed ID: 17129135 [TBL] [Abstract][Full Text] [Related]
2. A fundamental measure theory for the sticky hard sphere fluid. Hansen-Goos H; Wettlaufer JS J Chem Phys; 2011 Jan; 134(1):014506. PubMed ID: 21219006 [TBL] [Abstract][Full Text] [Related]
3. Structures and correlation functions of multicomponent and polydisperse hard-sphere mixtures from a density functional theory. Yu YX; Wu J; Xin YX; Gao GH J Chem Phys; 2004 Jul; 121(3):1535-41. PubMed ID: 15260699 [TBL] [Abstract][Full Text] [Related]
4. A new generalization of the Carnahan-Starling equation of state to additive mixtures of hard spheres. Hansen-Goos H; Roth R J Chem Phys; 2006 Apr; 124(15):154506. PubMed ID: 16674241 [TBL] [Abstract][Full Text] [Related]
5. Tensorial density functional theory for non-spherical hard-body fluids. Hansen-Goos H; Mecke K J Phys Condens Matter; 2010 Sep; 22(36):364107. PubMed ID: 21386523 [TBL] [Abstract][Full Text] [Related]
6. Density functional theory for hard-sphere mixtures: the White Bear version mark II. Hansen-Goos H; Roth R J Phys Condens Matter; 2006 Sep; 18(37):8413-25. PubMed ID: 21690897 [TBL] [Abstract][Full Text] [Related]
7. Fundamental measure theory for the inhomogeneous hard-sphere system based on Santos' consistent free energy. Hansen-Goos H; Mortazavifar M; Oettel M; Roth R Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):052121. PubMed ID: 26066133 [TBL] [Abstract][Full Text] [Related]
8. Scalar fundamental measure theory for hard spheres in three dimensions: application to hydrophobic solvation. Levesque M; Vuilleumier R; Borgis D J Chem Phys; 2012 Jul; 137(3):034115. PubMed ID: 22830691 [TBL] [Abstract][Full Text] [Related]
9. Generalization of Rosenfeld's functional to non-additive hard-spheres: pair structure and test-particle consistency. Ayadim A; Amokrane S J Phys Condens Matter; 2010 Jan; 22(3):035103. PubMed ID: 21386279 [TBL] [Abstract][Full Text] [Related]
10. Equation of state of nonadditive d-dimensional hard-sphere mixtures. Santos A; López de Haro M; Yuste SB J Chem Phys; 2005 Jan; 122(2):024514. PubMed ID: 15638605 [TBL] [Abstract][Full Text] [Related]
11. Many-fluid Onsager density functional theories for orientational ordering in mixtures of anisotropic hard-body fluids. Malijevský A; Jackson G; Varga S J Chem Phys; 2008 Oct; 129(14):144504. PubMed ID: 19045155 [TBL] [Abstract][Full Text] [Related]
12. Density functional theory for colloidal mixtures of hard platelets, rods, and spheres. Esztermann A; Reich H; Schmidt M Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jan; 73(1 Pt 1):011409. PubMed ID: 16486142 [TBL] [Abstract][Full Text] [Related]
13. Structure of inhomogeneous attractive and repulsive hard-core yukawa fluid: grand canonical Monte Carlo simulation and density functional theory study. You FQ; Yu YX; Gao GH J Phys Chem B; 2005 Mar; 109(8):3512-8. PubMed ID: 16851387 [TBL] [Abstract][Full Text] [Related]
14. Binary mixture of nonadditive hard spheres adsorbed in a slit pore: a study of the population inversion by the integral equations theory. Ayadim A; Amokrane S J Phys Chem B; 2010 Dec; 114(50):16824-31. PubMed ID: 21090779 [TBL] [Abstract][Full Text] [Related]
15. Structure of highly asymmetric hard-sphere mixtures: an efficient closure of the Ornstein-Zernike equations. Amokrane S; Ayadim A; Malherbe JG J Chem Phys; 2005 Nov; 123(17):174508. PubMed ID: 16375547 [TBL] [Abstract][Full Text] [Related]
16. Structure of penetrable sphere fluids and mixtures near a slit hard wall: a modified bridge density functional approximation. Kim SC; Seong BS; Suh SH J Chem Phys; 2009 Oct; 131(13):134701. PubMed ID: 19814564 [TBL] [Abstract][Full Text] [Related]
17. Fundamental measure theory for inhomogeneous fluids of nonspherical hard particles. Hansen-Goos H; Mecke K Phys Rev Lett; 2009 Jan; 102(1):018302. PubMed ID: 19257246 [TBL] [Abstract][Full Text] [Related]
18. Sedimentation equilibrium of colloidal suspensions in a planar pore based on density functional theory and the hard-core attractive Yukawa model. Zhou S; Sun H J Phys Chem B; 2005 Apr; 109(13):6397-404. PubMed ID: 16851712 [TBL] [Abstract][Full Text] [Related]
19. Fundamental measure density functional theory for nonadditive hard-core mixtures: the one-dimensional case. Schmidt M Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 1):031202. PubMed ID: 17930234 [TBL] [Abstract][Full Text] [Related]
20. Density functional for additive mixtures. Schmidt M Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Sep; 62(3 Pt B):3799-802. PubMed ID: 11088897 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]