These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 17129351)

  • 1. Extracellular matrix protein turnover during salamander limb regeneration.
    Tassava RA; Nace JD; Wei Y
    Wound Repair Regen; 1996; 4(1):75-81. PubMed ID: 17129351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monoclonal antibody MT2 identifies the urodele alpha 1 chain of type XII collagen, a developmentally regulated extracellular matrix protein in regenerating newt limbs.
    Wei Y; Yang EV; Klatt KP; Tassava RA
    Dev Biol; 1995 Apr; 168(2):503-13. PubMed ID: 7729585
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Examination of fibronectin distribution and its sources in the regenerating newt limb by immunocytochemistry and in situ hybridization.
    Nace JD; Tassava RA
    Dev Dyn; 1995 Feb; 202(2):153-64. PubMed ID: 7734733
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monoclonal antibody ST1 identifies an antigen that is abundant in the axolotl and newt limb stump but is absent from the undifferentiated regenerate.
    Yang EV; Shima DT; Tassava RA
    J Exp Zool; 1992 Dec; 264(3):337-50. PubMed ID: 1279094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An extracellular matrix molecule of newt and axolotl regenerating limb blastemas and embryonic limb buds: immunological relationship of MT1 antigen with tenascin.
    Onda H; Goldhamer DJ; Tassava RA
    Development; 1990 Apr; 108(4):657-68. PubMed ID: 1696876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of the extracellular matrix during the epimorphic anterior regeneration of Owenia fusiformis: autoradiographical and in situ hybridization studies.
    Dupin F; Coulon J; Le Parco Y; Fontes M; Thouveny Y
    Int J Dev Biol; 1991 Jun; 35(2):109-19. PubMed ID: 1768599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The axolotl limb: a model for bone development, regeneration and fracture healing.
    Hutchison C; Pilote M; Roy S
    Bone; 2007 Jan; 40(1):45-56. PubMed ID: 16920050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The cellular basis of limb regeneration in urodeles.
    Mescher AL
    Int J Dev Biol; 1996 Aug; 40(4):785-95. PubMed ID: 8877452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical modulation of tenascin-C and collagen-XII expression during avian synovial joint formation.
    Mikic B; Wong M; Chiquet M; Hunziker EB
    J Orthop Res; 2000 May; 18(3):406-15. PubMed ID: 10937627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distribution of tenascin-C, fibronectin and collagen types III and IV during regeneration of rat submandibular gland.
    Ueda K; Shimizu O; Oka S; Saito M; Hide M; Matsumoto M
    Int J Oral Maxillofac Surg; 2009 Jan; 38(1):79-84. PubMed ID: 19097859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tenascin-R and axon growth-promoting molecules are up-regulated in the regenerating visual pathway of the lizard (Gallotia galloti).
    Lang DM; Monzon-Mayor M; Del Mar Romero-Aleman M; Yanes C; Santos E; Pesheva P
    Dev Neurobiol; 2008 Jun; 68(7):899-916. PubMed ID: 18361401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene expression of tenascin is altered in normal scars and keloids.
    Sible JC; Rettig WJ; Eriksson E; Smith SP; Oliver N
    Wound Repair Regen; 1995; 3(1):37-48. PubMed ID: 17168861
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extracellular matrix gene alternative splicing by trabecular meshwork cells in response to mechanical stretching.
    Keller KE; Kelley MJ; Acott TS
    Invest Ophthalmol Vis Sci; 2007 Mar; 48(3):1164-72. PubMed ID: 17325160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Some principles of regeneration in mammalian systems.
    Carlson BM
    Anat Rec B New Anat; 2005 Nov; 287(1):4-13. PubMed ID: 16308859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The extracellular-matrix protein matrilin 2 participates in peripheral nerve regeneration.
    Malin D; Sonnenberg-Riethmacher E; Guseva D; Wagener R; Aszódi A; Irintchev A; Riethmacher D
    J Cell Sci; 2009 Apr; 122(Pt 7):995-1004. PubMed ID: 19295126
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Limb regeneration in higher vertebrates: developing a roadmap.
    Han M; Yang X; Taylor G; Burdsal CA; Anderson RA; Muneoka K
    Anat Rec B New Anat; 2005 Nov; 287(1):14-24. PubMed ID: 16308860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [A radioautographic study of changes in the intensity of total protein synthesis in the limb tissues of anuran amphibia during loss of regenerating capacity].
    Cherkasova LV
    Ontogenez; 1975; 6(2):190-4. PubMed ID: 1082563
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retinoic acid and its receptors in limb regeneration.
    Maden M
    Semin Cell Dev Biol; 1997 Aug; 8(4):445-53. PubMed ID: 15001083
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immunohistochemical study of the extracellular matrix proteins laminin, fibronectin and type IV collagen in secretory meningiomas.
    Caffo M; Caruso G; Galatioto S; Meli F; Cacciola F; Germanò A; Alafaci C; Tomasello F
    J Clin Neurosci; 2008 Jul; 15(7):806-11. PubMed ID: 18474427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transgenic Xenopus with prx1 limb enhancer reveals crucial contribution of MEK/ERK and PI3K/AKT pathways in blastema formation during limb regeneration.
    Suzuki M; Satoh A; Ide H; Tamura K
    Dev Biol; 2007 Apr; 304(2):675-86. PubMed ID: 17303106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.