BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 17129585)

  • 1. Pressure-driven flow control system for nanofluidic chemical process.
    Tamaki E; Hibara A; Kim HB; Tokeshi M; Kitamori T
    J Chromatogr A; 2006 Dec; 1137(2):256-62. PubMed ID: 17129585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solute separation in nanofluidic channels: pressure-driven or electric field-driven?
    Xuan X; Li D
    Electrophoresis; 2007 Feb; 28(4):627-34. PubMed ID: 17304496
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optic imaging of single and two-phase pressure-driven flows in nano-scale channels.
    Wu Q; Ok JT; Sun Y; Retterer ST; Neeves KB; Yin X; Bai B; Ma Y
    Lab Chip; 2013 Mar; 13(6):1165-71. PubMed ID: 23370894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A system for micro/nano fluidic flow diagnostics.
    Nath P; Roy S; Conlisk T; Fleischman AJ
    Biomed Microdevices; 2005 Sep; 7(3):169-77. PubMed ID: 16133803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micro wet analysis system using multi-phase laminar flows in three-dimensional microchannel network.
    Kikutani Y; Hisamoto H; Tokeshi M; Kitamori T
    Lab Chip; 2004 Aug; 4(4):328-32. PubMed ID: 15269799
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrated fluidic systems on a nanometer scale and the study on behavior of liquids in small confinement.
    Hibara A; Tsukahara T; Kitamori T
    J Chromatogr A; 2009 Jan; 1216(4):673-83. PubMed ID: 19121833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a pressure-driven nanofluidic control system and its application to an enzymatic reaction.
    Tsukahara T; Mawatari K; Hibara A; Kitamori T
    Anal Bioanal Chem; 2008 Aug; 391(8):2745-52. PubMed ID: 18581104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A simple polysilsesquioxane sealing of nanofluidic channels below 10 nm at room temperature.
    Gu J; Gupta R; Chou CF; Wei Q; Zenhausern F
    Lab Chip; 2007 Sep; 7(9):1198-201. PubMed ID: 17713620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Induced electrokinetic transport in micro-nanofluidic interconnect devices.
    Jin X; Joseph S; Gatimu EN; Bohn PW; Aluru NR
    Langmuir; 2007 Dec; 23(26):13209-22. PubMed ID: 17999544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrokinetic pumping and detection of low-volume flows in nanochannels.
    Mela P; Tas NR; Berenschot EJ; van Nieuwkasteele J; van den Berg A
    Electrophoresis; 2004 Nov; 25(21-22):3687-93. PubMed ID: 15565691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Attoliter-scale dispensing in nanofluidic channels.
    Kovarik ML; Jacobson SC
    Anal Chem; 2007 Feb; 79(4):1655-60. PubMed ID: 17297969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of gas molecules on nanofluidic behaviors.
    Qiao Y; Cao G; Chen X
    J Am Chem Soc; 2007 Feb; 129(8):2355-9. PubMed ID: 17279750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding flow enhancement in graphene-coated nanochannels.
    Jin Y; Tao R; Li Z
    Electrophoresis; 2019 Mar; 40(6):859-864. PubMed ID: 30575055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diffusioosmotic flows in slit nanochannels.
    Qian S; Das B; Luo X
    J Colloid Interface Sci; 2007 Nov; 315(2):721-30. PubMed ID: 17719599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influences of streaming potential on cross stream migration of flexible polymer molecules in nanochannel flows.
    Das T; Das S; Chakraborty S
    J Chem Phys; 2009 Jun; 130(24):244904. PubMed ID: 19566178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vertical arrays of nanofluidic channels fabricated without nanolithography.
    Sordan R; Miranda A; Traversi F; Colombo D; Chrastina D; Isella G; Masserini M; Miglio L; Kern K; Balasubramanian K
    Lab Chip; 2009 Jun; 9(11):1556-60. PubMed ID: 19458862
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport of charged samples in fluidic channels with large zeta potentials.
    Dutta D
    Electrophoresis; 2007 Dec; 28(24):4552-60. PubMed ID: 18072222
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of streaming potential on the transport and separation of charged spherical solutes in nanochannels subjected to particle-wall interactions.
    Das S; Chakraborty S
    Langmuir; 2009 Sep; 25(17):9863-72. PubMed ID: 19618905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanochannels in SU-8 with floor and ceiling metal electrodes and integrated microchannels.
    Nichols KP; Eijkel JC; Gardeniers HJ
    Lab Chip; 2008 Jan; 8(1):173-5. PubMed ID: 18094776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Passive flow-rate regulators using pressure-dependent autonomous deflection of parallel membrane valves.
    Doh I; Cho YH
    Lab Chip; 2009 Jul; 9(14):2070-5. PubMed ID: 19568677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.