These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 17129590)

  • 1. 2-(4-Carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potentiates nitrosation of a heterocyclic amine carcinogen by nitric oxide.
    Lakshmi VM; Zenser TV
    Life Sci; 2007 Jan; 80(7):644-9. PubMed ID: 17129590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hemin potentiates nitric oxide-mediated nitrosation of 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) to 2-nitrosoamino-3-methylimidazo[4,5-f]quinoline.
    Lakshmi VM; Clapper ML; Chang WC; Zenser TV
    Chem Res Toxicol; 2005 Mar; 18(3):528-35. PubMed ID: 15777093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Myeloperoxidase potentiates nitric oxide-mediated nitrosation.
    Lakshmi VM; Nauseef WM; Zenser TV
    J Biol Chem; 2005 Jan; 280(3):1746-53. PubMed ID: 15531583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitric oxide-mediated nitrosation of 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline potentiated by hemin and myeloperoxidase.
    Lakshmi VM; Hsu FF; Zenser TV
    Chem Res Toxicol; 2005 Jun; 18(6):1038-47. PubMed ID: 15962939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitrosation and nitration of 2-amino-3-methylimidazo[4,5-f]quinoline by reactive nitrogen oxygen species.
    Lakshmi VM; Hsu FF; Zenser TV
    Chem Res Toxicol; 2002 Aug; 15(8):1059-68. PubMed ID: 12184790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 2-Nitrosoamino-3-methylimidazo[4,5-f]quinoline activated by the inflammatory response forms nucleotide adducts.
    Lakshmi VM; Schut HA; Zenser TV
    Food Chem Toxicol; 2005 Nov; 43(11):1607-17. PubMed ID: 15964673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 2-Nitrosoamino-3-methylimidazo[4,5-f]quinoline stability and reactivity.
    Lakshmi VM; Hsu FF; Zenser TV
    Chem Res Toxicol; 2004 May; 17(5):709-16. PubMed ID: 15144229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transformation and activation of benzidine by oxidants of the inflammatory response.
    Lakshmi VM; Hsu FF; Zenser TV
    Chem Res Toxicol; 2003 Mar; 16(3):367-74. PubMed ID: 12641437
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitrosation, nitration, and autoxidation of the selective estrogen receptor modulator raloxifene by nitric oxide, peroxynitrite, and reactive nitrogen/oxygen species.
    Toader V; Xu X; Nicolescu A; Yu L; Bolton JL; Thatcher GR
    Chem Res Toxicol; 2003 Oct; 16(10):1264-76. PubMed ID: 14565768
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of a nitronyl nitroxide to discriminate the contribution of nitric oxide radical in endothelium-dependent relaxation of control and diabetic blood vessels.
    Pieper GM; Siebeneich W
    J Pharmacol Exp Ther; 1997 Oct; 283(1):138-47. PubMed ID: 9336318
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of an ATP-dependent pathway of activation for the heterocyclic amine carcinogen N-hydroxy-2-amino-3-methylimidazo[4, 5-f]quinoline.
    Agus C; Ilett KF; Kadlubar FF; Minchin RF
    Carcinogenesis; 2000 Jun; 21(6):1213-9. PubMed ID: 10837012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation and reduction of aryl and heterocyclic nitroso compounds and significance in the flux of hydroxylamines.
    Kim D; Kadlubar FF; Teitel CH; Guengerich FP
    Chem Res Toxicol; 2004 Apr; 17(4):529-36. PubMed ID: 15089095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of Precursors and Formation Pathway for the Heterocyclic Aromatic Amine 2-Amino-3-methylimidazo(4,5-
    Zamora R; Lavado-Tena CM; Hidalgo FJ
    J Agric Food Chem; 2020 Jul; 68(28):7474-7481. PubMed ID: 32564598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonenzymatic reduction of nitro derivative of a heterocyclic amine IQ by NADH and Cu(II) leads to oxidative DNA damage.
    Murata M; Kobayashi M; Kawanishi S
    Biochemistry; 1999 Jun; 38(24):7624-9. PubMed ID: 10387001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinction between nitrosating mechanisms within human cells and aqueous solution.
    Espey MG; Miranda KM; Thomas DD; Wink DA
    J Biol Chem; 2001 Aug; 276(32):30085-91. PubMed ID: 11404354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanistic studies of oxidative decomposition of Angeli's salt and PAPA NONOate.
    Bobko AA; Khramtsov VV
    Nitric Oxide; 2014 Aug; 40():92-8. PubMed ID: 24947085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitrating reactive nitric oxygen species transform acetaminophen to 3-nitroacetaminophen.
    Lakshmi VM; Hsu FF; Davis BB; Zenser TV
    Chem Res Toxicol; 2000 Sep; 13(9):891-9. PubMed ID: 10995262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitrosation of uric acid induced by nitric oxide under aerobic conditions.
    Suzuki T
    Nitric Oxide; 2007 Mar; 16(2):266-73. PubMed ID: 17166753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic processing and disposition of 2-amino-3-methylimidazo[4,5-f] quinoline (IQ), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in nonhuman primates.
    Snyderwine EG; Turesky RJ; Buonarati MH; Turteltaub KW; Adamson RH
    Princess Takamatsu Symp; 1995; 23():69-77. PubMed ID: 8844797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of an imidazolineoxyl nitric oxide on prostaglandin synthesis in experimental shock: possible role of nitrogen dioxide in prostacyclin synthase inactivation.
    Soler M; Camacho M; Molins-Pujol AM; Vila L
    J Infect Dis; 2001 Jan; 183(1):105-12. PubMed ID: 11076704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.