These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 17129640)
1. Resetting of central and peripheral circadian oscillators in aged rats. Davidson AJ; Yamazaki S; Arble DM; Menaker M; Block GD Neurobiol Aging; 2008 Mar; 29(3):471-7. PubMed ID: 17129640 [TBL] [Abstract][Full Text] [Related]
2. Circadian rhythms in isolated brain regions. Abe M; Herzog ED; Yamazaki S; Straume M; Tei H; Sakaki Y; Menaker M; Block GD J Neurosci; 2002 Jan; 22(1):350-6. PubMed ID: 11756518 [TBL] [Abstract][Full Text] [Related]
3. Resetting central and peripheral circadian oscillators in transgenic rats. Yamazaki S; Numano R; Abe M; Hida A; Takahashi R; Ueda M; Block GD; Sakaki Y; Menaker M; Tei H Science; 2000 Apr; 288(5466):682-5. PubMed ID: 10784453 [TBL] [Abstract][Full Text] [Related]
4. Effects of preparation time on phase of cultured tissues reveal complexity of circadian organization. Yoshikawa T; Yamazaki S; Menaker M J Biol Rhythms; 2005 Dec; 20(6):500-12. PubMed ID: 16275769 [TBL] [Abstract][Full Text] [Related]
5. Effects of aging on central and peripheral mammalian clocks. Yamazaki S; Straume M; Tei H; Sakaki Y; Menaker M; Block GD Proc Natl Acad Sci U S A; 2002 Aug; 99(16):10801-6. PubMed ID: 12149444 [TBL] [Abstract][Full Text] [Related]
6. Aging differentially affects the re-entrainment response of central and peripheral circadian oscillators. Sellix MT; Evans JA; Leise TL; Castanon-Cervantes O; Hill DD; DeLisser P; Block GD; Menaker M; Davidson AJ J Neurosci; 2012 Nov; 32(46):16193-202. PubMed ID: 23152603 [TBL] [Abstract][Full Text] [Related]
7. c-Jun N-terminal kinase inhibitor SP600125 modulates the period of mammalian circadian rhythms. Chansard M; Molyneux P; Nomura K; Harrington ME; Fukuhara C Neuroscience; 2007 Mar; 145(3):812-23. PubMed ID: 17270352 [TBL] [Abstract][Full Text] [Related]
9. Independent circadian oscillations of Period1 in specific brain areas in vivo and in vitro. Abraham U; Prior JL; Granados-Fuentes D; Piwnica-Worms DR; Herzog ED J Neurosci; 2005 Sep; 25(38):8620-6. PubMed ID: 16177029 [TBL] [Abstract][Full Text] [Related]
10. Melatonin, the pineal gland, and circadian rhythms. Cassone VM; Warren WS; Brooks DS; Lu J J Biol Rhythms; 1993; 8 Suppl():S73-81. PubMed ID: 8274765 [TBL] [Abstract][Full Text] [Related]
11. A circadian rhythm in the expression of PERIOD2 protein reveals a novel SCN-controlled oscillator in the oval nucleus of the bed nucleus of the stria terminalis. Amir S; Lamont EW; Robinson B; Stewart J J Neurosci; 2004 Jan; 24(4):781-90. PubMed ID: 14749422 [TBL] [Abstract][Full Text] [Related]
12. Differential response of Period 1 expression within the suprachiasmatic nucleus. Nakamura W; Yamazaki S; Takasu NN; Mishima K; Block GD J Neurosci; 2005 Jun; 25(23):5481-7. PubMed ID: 15944376 [TBL] [Abstract][Full Text] [Related]
13. The pineal gland: photoreception and coupling of behavioral, metabolic, and cardiovascular circadian outputs. Warren WS; Cassone VM J Biol Rhythms; 1995 Mar; 10(1):64-79. PubMed ID: 7632982 [TBL] [Abstract][Full Text] [Related]
14. Circadian profile of Per gene mRNA expression in the suprachiasmatic nucleus, paraventricular nucleus, and pineal body of aged rats. Asai M; Yoshinobu Y; Kaneko S; Mori A; Nikaido T; Moriya T; Akiyama M; Shibata S J Neurosci Res; 2001 Dec; 66(6):1133-9. PubMed ID: 11746446 [TBL] [Abstract][Full Text] [Related]
15. Circadian entrainment aftereffects in suprachiasmatic nuclei and peripheral tissues in vitro. Molyneux PC; Dahlgren MK; Harrington ME Brain Res; 2008 Sep; 1228():127-34. PubMed ID: 18598681 [TBL] [Abstract][Full Text] [Related]
16. Dissociation between circadian Per1 and neuronal and behavioral rhythms following a shifted environmental cycle. Vansteensel MJ; Yamazaki S; Albus H; Deboer T; Block GD; Meijer JH Curr Biol; 2003 Sep; 13(17):1538-42. PubMed ID: 12956957 [TBL] [Abstract][Full Text] [Related]
17. [Mechanism of pineal and suprachiasmatic regulation on circadian rhythm of body temperature in rats]. Tong J; Qin LQ; Wang DJ Space Med Med Eng (Beijing); 2000 Apr; 13(2):101-3. PubMed ID: 11543047 [TBL] [Abstract][Full Text] [Related]
18. Aging does not compromise in vitro oscillation of the suprachiasmatic nuclei but makes it more vulnerable to constant light. Polidarová L; Sládek M; Novosadová Z; Sumová A Chronobiol Int; 2017; 34(1):105-117. PubMed ID: 27791401 [TBL] [Abstract][Full Text] [Related]
19. Suprachiasmatic nucleus grafts restore circadian behavioral rhythms of genetically arrhythmic mice. Sujino M; Masumoto KH; Yamaguchi S; van der Horst GT; Okamura H; Inouye ST Curr Biol; 2003 Apr; 13(8):664-8. PubMed ID: 12699623 [TBL] [Abstract][Full Text] [Related]
20. Circadian rhythms and different photoresponses of Clock gene transcription in the rat suprachiasmatic nucleus and pineal gland. Wang GQ; Fu CL; Li JX; Du YZ; Tong J Sheng Li Xue Bao; 2006 Aug; 58(4):359-64. PubMed ID: 16906337 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]