BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 17130126)

  • 1. Chaperone properties of mammalian mitochondrial translation elongation factor Tu.
    Suzuki H; Ueda T; Taguchi H; Takeuchi N
    J Biol Chem; 2007 Feb; 282(6):4076-84. PubMed ID: 17130126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of domain exchanges between Escherichia coli and mammalian mitochondrial EF-Tu on interactions with guanine nucleotides, aminoacyl-tRNA and ribosomes.
    Bullard JM; Cai YC; Zhang Y; Spremulli LL
    Biochim Biophys Acta; 1999 Jul; 1446(1-2):102-14. PubMed ID: 10395923
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chaperone properties of bacterial elongation factor EF-Tu.
    Caldas TD; El Yaagoubi A; Richarme G
    J Biol Chem; 1998 May; 273(19):11478-82. PubMed ID: 9565560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial translation factors of Trypanosoma brucei: elongation factor-Tu has a unique subdomain that is essential for its function.
    Cristodero M; Mani J; Oeljeklaus S; Aeberhard L; Hashimi H; Ramrath DJ; Lukeš J; Warscheid B; Schneider A
    Mol Microbiol; 2013 Nov; 90(4):744-55. PubMed ID: 24033548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutagenesis of glutamine 290 in Escherichia coli and mitochondrial elongation factor Tu affects interactions with mitochondrial aminoacyl-tRNAs and GTPase activity.
    Hunter SE; Spremulli LL
    Biochemistry; 2004 Jun; 43(22):6917-27. PubMed ID: 15170329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substitution of Val20 by Gly in elongation factor Tu. Effects on the interaction with elongation factors Ts, aminoacyl-tRNA and ribosomes.
    Jacquet E; Parmeggiani A
    Eur J Biochem; 1989 Nov; 185(2):341-6. PubMed ID: 2684669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutagenesis of Arg335 in bovine mitochondrial elongation factor Tu and the corresponding residue in the Escherichia coli factor affects interactions with mitochondrial aminoacyl-tRNAs.
    Hunter SE; Spremulli LL
    RNA Biol; 2004 Jul; 1(2):95-102. PubMed ID: 17179748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Duplication of
    Sato A; Suematsu T; Aihara KK; Kita K; Suzuki T; Watanabe K; Ohtsuki T; Watanabe YI
    Biochem J; 2017 Mar; 474(6):957-969. PubMed ID: 28130490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chaperone activity of recombinant maize chloroplast protein synthesis elongation factor, EF-Tu.
    Rao D; Momcilovic I; Kobayashi S; Callegari E; Ristic Z
    Eur J Biochem; 2004 Sep; 271(18):3684-92. PubMed ID: 15355346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphorylation of mammalian mitochondrial EF-Tu by Fyn and c-Src kinases.
    Koc EC; Hunter CA; Koc H
    Cell Signal; 2023 Jan; 101():110524. PubMed ID: 36379377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aminoacyl-tRNA surveillance by EF-Tu in mammalian mitochondria.
    Nagao A; Suzuki T; Suzuki T
    Nucleic Acids Symp Ser (Oxf); 2007; (51):41-2. PubMed ID: 18029576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of mutagenesis of Gln97 in the switch II region of Escherichia coli elongation factor Tu on its interaction with guanine nucleotides, elongation factor Ts, and aminoacyl-tRNA.
    Navratil T; Spremulli LL
    Biochemistry; 2003 Nov; 42(46):13587-95. PubMed ID: 14622005
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cloning, sequence analysis and expression of mammalian mitochondrial protein synthesis elongation factor Tu.
    Woriax VL; Burkhart W; Spremulli LL
    Biochim Biophys Acta; 1995 Dec; 1264(3):347-56. PubMed ID: 8547323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Roles of residues in mammalian mitochondrial elongation factor Ts in the interaction with mitochondrial and bacterial elongation factor Tu.
    Zhang Y; Spremulli LL
    J Biol Chem; 1998 Oct; 273(43):28142-8. PubMed ID: 9774433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial translation: elongation factor tu is essential in fission yeast and depends on an exchange factor conserved in humans but not in budding yeast.
    Chiron S; Suleau A; Bonnefoy N
    Genetics; 2005 Apr; 169(4):1891-901. PubMed ID: 15695360
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A single amino acid substitution in elongation factor Tu disrupts interaction between the ternary complex and the ribosome.
    Tubulekas I; Hughes D
    J Bacteriol; 1993 Jan; 175(1):240-50. PubMed ID: 8416899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of mitochondrial elongation factor Tu with aminoacyl-tRNA and elongation factor Ts.
    Cai YC; Bullard JM; Thompson NL; Spremulli LL
    J Biol Chem; 2000 Jul; 275(27):20308-14. PubMed ID: 10801827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nucleotide and aminoacyl-tRNA specificity of the mammalian mitochondrial elongation factor EF-Tu.Ts complex.
    Woriax VL; Spremulli GH; Spremulli LL
    Biochim Biophys Acta; 1996 Jun; 1307(1):66-72. PubMed ID: 8652669
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural dynamics of translation elongation factor Tu during aa-tRNA delivery to the ribosome.
    Kavaliauskas D; Chen C; Liu W; Cooperman BS; Goldman YE; Knudsen CR
    Nucleic Acids Res; 2018 Sep; 46(16):8651-8661. PubMed ID: 30107527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plastid Translation Elongation Factor Tu Is Prone to Heat-Induced Aggregation Despite Its Critical Role in Plant Heat Tolerance.
    Li X; Cai C; Wang Z; Fan B; Zhu C; Chen Z
    Plant Physiol; 2018 Apr; 176(4):3027-3045. PubMed ID: 29444814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.