These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 17130449)

  • 1. A driving and coupling "Pac-Man" mechanism for chromosome poleward translocation in anaphase A.
    Liu J; Onuchic JN
    Proc Natl Acad Sci U S A; 2006 Dec; 103(49):18432-7. PubMed ID: 17130449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pac-Man does not resolve the enduring problem of anaphase chromosome movement.
    Pickett-Heaps JD; Forer A
    Protoplasma; 2001; 215(1-4):16-20. PubMed ID: 11732055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct observation of microtubule dynamics at kinetochores in Xenopus extract spindles: implications for spindle mechanics.
    Maddox P; Straight A; Coughlin P; Mitchison TJ; Salmon ED
    J Cell Biol; 2003 Aug; 162(3):377-82. PubMed ID: 12900391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A mechanomolecular model for the movement of chromosomes during mitosis driven by a minimal kinetochore bicyclic cascade.
    Shtylla B; Keener JP
    J Theor Biol; 2010 Apr; 263(4):455-70. PubMed ID: 20043924
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct visualization of microtubule flux during metaphase and anaphase in crane-fly spermatocytes.
    LaFountain JR; Cohan CS; Siegel AJ; LaFountain DJ
    Mol Biol Cell; 2004 Dec; 15(12):5724-32. PubMed ID: 15469981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The kinetochore microtubule minus-end disassembly associated with poleward flux produces a force that can do work.
    Waters JC; Mitchison TJ; Rieder CL; Salmon ED
    Mol Biol Cell; 1996 Oct; 7(10):1547-58. PubMed ID: 8898361
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polewards chromosome movement driven by microtubule depolymerization in vitro.
    Koshland DE; Mitchison TJ; Kirschner MW
    Nature; 1988 Feb; 331(6156):499-504. PubMed ID: 3340202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Cell division and the microtubular cytoskeleton].
    Izutsu K
    Hum Cell; 1991 Jun; 4(2):100-8. PubMed ID: 1835652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultraviolet microbeam irradiations of epithelial and spermatocyte spindles suggest that forces act on the kinetochore fibre and are not generated by its disassembly.
    Spurck T; Forer A; Pickett-Heaps J
    Cell Motil Cytoskeleton; 1997; 36(2):136-48. PubMed ID: 9015202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oscillatory movements of monooriented chromosomes and their position relative to the spindle pole result from the ejection properties of the aster and half-spindle.
    Rieder CL; Davison EA; Jensen LC; Cassimeris L; Salmon ED
    J Cell Biol; 1986 Aug; 103(2):581-91. PubMed ID: 3733881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrostatic force in prometaphase, metaphase, and anaphase-A chromosome motions.
    Gagliardi LJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jul; 66(1 Pt 1):011901. PubMed ID: 12241378
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure of kinetochore fibres in crane-fly spermatocytes after irradiation with an ultraviolet microbeam: neither microtubules nor actin filaments remain in the irradiated region.
    Forer A; Spurck T; Pickett-Heaps JD; Wilson PJ
    Cell Motil Cytoskeleton; 2003 Nov; 56(3):173-92. PubMed ID: 14569597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anaphase A chromosome movement and poleward spindle microtubule flux occur At similar rates in Xenopus extract spindles.
    Desai A; Maddox PS; Mitchison TJ; Salmon ED
    J Cell Biol; 1998 May; 141(3):703-13. PubMed ID: 9566970
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromosomes move poleward in anaphase along stationary microtubules that coordinately disassemble from their kinetochore ends.
    Gorbsky GJ; Sammak PJ; Borisy GG
    J Cell Biol; 1987 Jan; 104(1):9-18. PubMed ID: 3793763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of microtubules and the mechanism of chromosome movement (zipper hypothesis). 3 Theoretical analysis of energy requirements and computer simulation of chromosome movement.
    Novitski CE; Bajer AS
    Cytobios; 1978; 18(71-72):173-82. PubMed ID: 679724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microtubule dynamics and chromosome motion visualized in living anaphase cells.
    Gorbsky GJ; Sammak PJ; Borisy GG
    J Cell Biol; 1988 Apr; 106(4):1185-92. PubMed ID: 3283149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Can molecular cell biology explain chromosome motions?
    Shain DH; Gagliardi LJ
    Theor Biol Med Model; 2011 May; 8():15. PubMed ID: 21619650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RAMA1 is a novel kinetochore protein involved in kinetochore-microtubule attachment.
    Raaijmakers JA; Tanenbaum ME; Maia AF; Medema RH
    J Cell Sci; 2009 Jul; 122(Pt 14):2436-45. PubMed ID: 19549680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular architecture of the kinetochore-microtubule interface.
    Cheeseman IM; Desai A
    Nat Rev Mol Cell Biol; 2008 Jan; 9(1):33-46. PubMed ID: 18097444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Movement of chromosomes with severed kinetochore microtubules.
    Forer A; Johansen KM; Johansen J
    Protoplasma; 2015 May; 252(3):775-81. PubMed ID: 25576435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.