These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 171311)

  • 21. Changes in the fatty acid composition of Drosophila melanogaster during development and ageing.
    Green PR; Geer BW
    Arch Int Physiol Biochim; 1979 Aug; 87(3):485-91. PubMed ID: 93438
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genetic manipulation of cyclic AMP levels in Drosophila melanogaster.
    Davis RL; Kiger JA
    Biochem Biophys Res Commun; 1978 Apr; 81(4):1180-6. PubMed ID: 208544
    [No Abstract]   [Full Text] [Related]  

  • 23. [Spontaneous and temperature-induced recombination in Drosophila strains with altered cAMP metabolism].
    Korochkina SE; Savvateeva EV; Klimenko VV; Ponomarenko VV
    Dokl Akad Nauk SSSR; 1985; 285(6):1454-8. PubMed ID: 3004862
    [No Abstract]   [Full Text] [Related]  

  • 24. Cyclic AMP-dependent memory mutants are defective in the food choice behavior of Drosophila.
    Motosaka K; Koganezawa M; Narikawa S; Furuyama A; Shinozaki K; Isono K; Shimada I
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2007 Feb; 193(2):279-83. PubMed ID: 17180701
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Relationship between a metabolic rhythm and emergence rhythm in Drosophila melanogaster.
    Belcher KS; Brett WJ
    J Insect Physiol; 1973 Feb; 19(2):277-86. PubMed ID: 4196147
    [No Abstract]   [Full Text] [Related]  

  • 26. RNAi-mediated suppression of the mitochondrial iron chaperone, frataxin, in Drosophila.
    Anderson PR; Kirby K; Hilliker AJ; Phillips JP
    Hum Mol Genet; 2005 Nov; 14(22):3397-405. PubMed ID: 16203742
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High sucrose consumption promotes obesity whereas its low consumption induces oxidative stress in Drosophila melanogaster.
    Rovenko BM; Kubrak OI; Gospodaryov DV; Perkhulyn NV; Yurkevych IS; Sanz A; Lushchak OV; Lushchak VI
    J Insect Physiol; 2015 Aug; 79():42-54. PubMed ID: 26050918
    [TBL] [Abstract][Full Text] [Related]  

  • 28. AP-1 functions upstream of CREB to control synaptic plasticity in Drosophila.
    Sanyal S; Sandstrom DJ; Hoeffer CA; Ramaswami M
    Nature; 2002 Apr; 416(6883):870-4. PubMed ID: 11976688
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cyclic AMP-induced phosphorylation of 27.5-kDa protein(s) in larval brains of normal and memory-mutant Drosophila melanogaster.
    Dévay P; Friedrich P
    J Neurogenet; 1987 Dec; 4(6):275-84. PubMed ID: 2831325
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cyclic AMP and cyclic GMP variations in several Drosophila melanogaster embryonic cellular clones cultured in vitro with or without 20-hydroxyecdysone.
    Courgeon AM; Cailla HL
    Exp Cell Res; 1981 May; 133(1):15-22. PubMed ID: 6263653
    [No Abstract]   [Full Text] [Related]  

  • 31. Folate synthesis in Ae. aegypti and Drosophila melanogaster larvae.
    Venters D
    Trans R Soc Trop Med Hyg; 1971; 65(5):687-8. PubMed ID: 5159151
    [No Abstract]   [Full Text] [Related]  

  • 32. Tissue-specific expression of the heat shock protein HSP27 during Drosophila melanogaster development.
    Pauli D; Tonka CH; Tissieres A; Arrigo AP
    J Cell Biol; 1990 Sep; 111(3):817-28. PubMed ID: 1697298
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The role of 20-hydroxyecdysone signaling in Drosophila pupal metabolism.
    Bond ND; Hoshizaki DK; Gibbs AG
    Comp Biochem Physiol A Mol Integr Physiol; 2010 Dec; 157(4):398-404. PubMed ID: 20817116
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A specific nutritional requirement for pyrimidines in rudimentary mutants of Drosophila melanogaster.
    Norby S
    Hereditas; 1970; 66(2):205-14. PubMed ID: 5004701
    [No Abstract]   [Full Text] [Related]  

  • 35. A Drosophila model of Menkes disease reveals a role for DmATP7 in copper absorption and neurodevelopment.
    Bahadorani S; Bahadorani P; Marcon E; Walker DW; Hilliker AJ
    Dis Model Mech; 2010; 3(1-2):84-91. PubMed ID: 20038716
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Immunohistochemical localization of a ligand-binding and a structural subunit of nicotinic acetylcholine receptors in the central nervous system of Drosophila melanogaster.
    Schuster R; Phannavong B; Schröder C; Gundelfinger ED
    J Comp Neurol; 1993 Sep; 335(2):149-62. PubMed ID: 8227511
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Developmental regulation and functions of the expression of the neuropeptide corazonin in Drosophila melanogaster.
    Lee G; Kim KM; Kikuno K; Wang Z; Choi YJ; Park JH
    Cell Tissue Res; 2008 Mar; 331(3):659-73. PubMed ID: 18087727
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Defect in cyclic AMP phosphodiesterase due to the dunce mutation of learning in Drosophila melanogaster.
    Byers D; Davis RL; Kiger JA
    Nature; 1981 Jan; 289(5793):79-81. PubMed ID: 6256649
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Differential requirement of Salvador-Warts-Hippo pathway members for organ size control in Drosophila melanogaster.
    Milton CC; Zhang X; Albanese NO; Harvey KF
    Development; 2010 Mar; 137(5):735-43. PubMed ID: 20110315
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Salt stress alters fluid and ion transport by Malpighian tubules of Drosophila melanogaster: evidence for phenotypic plasticity.
    Naikkhwah W; O'Donnell MJ
    J Exp Biol; 2011 Oct; 214(Pt 20):3443-54. PubMed ID: 21957108
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.