BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 17131213)

  • 1. Perceptual adaptation to spectrally shifted vowels: training with nonlexical labels.
    Li T; Fu QJ
    J Assoc Res Otolaryngol; 2007 Mar; 8(1):32-41. PubMed ID: 17131213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Auditory training with spectrally shifted speech: implications for cochlear implant patient auditory rehabilitation.
    Fu QJ; Nogaki G; Galvin JJ
    J Assoc Res Otolaryngol; 2005 Jun; 6(2):180-9. PubMed ID: 15952053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactions between unsupervised learning and the degree of spectral mismatch on short-term perceptual adaptation to spectrally shifted speech.
    Li T; Galvin JJ; Fu QJ
    Ear Hear; 2009 Apr; 30(2):238-49. PubMed ID: 19194293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of training rate on recognition of spectrally shifted speech.
    Nogaki G; Fu QJ; Galvin JJ
    Ear Hear; 2007 Apr; 28(2):132-40. PubMed ID: 17496666
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Perceptual "vowel spaces" of cochlear implant users: implications for the study of auditory adaptation to spectral shift.
    Harnsberger JD; Svirsky MA; Kaiser AR; Pisoni DB; Wright R; Meyer TA
    J Acoust Soc Am; 2001 May; 109(5 Pt 1):2135-45. PubMed ID: 11386565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Minimum spectral contrast needed for vowel identification by normal hearing and cochlear implant listeners.
    Loizou PC; Poroy O
    J Acoust Soc Am; 2001 Sep; 110(3 Pt 1):1619-27. PubMed ID: 11572371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of short-term training for spectrally mismatched noise-band speech.
    Fu QJ; Galvin JJ
    J Acoust Soc Am; 2003 Feb; 113(2):1065-72. PubMed ID: 12597199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comb-filtered speech as a tool to demonstrate difficulties of speech perception and the importance of auditory training in cochlear implant users.
    Petrov SM; Pisareva NY
    Cochlear Implants Int; 2011 Feb; 12(1):48-52. PubMed ID: 21756459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recognition of spectrally degraded and frequency-shifted vowels in acoustic and electric hearing.
    Fu QJ; Shannon RV
    J Acoust Soc Am; 1999 Mar; 105(3):1889-900. PubMed ID: 10089611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Perception of vowels and prosody by cochlear implant recipients in noise.
    Van Zyl M; Hanekom JJ
    J Commun Disord; 2013; 46(5-6):449-64. PubMed ID: 24157128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reducing Simulated Channel Interaction Reveals Differences in Phoneme Identification Between Children and Adults With Normal Hearing.
    Jahn KN; DiNino M; Arenberg JG
    Ear Hear; 2019; 40(2):295-311. PubMed ID: 29927780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Individual Variability in Recalibrating to Spectrally Shifted Speech: Implications for Cochlear Implants.
    Smith ML; Winn MB
    Ear Hear; 2021; 42(5):1412-1427. PubMed ID: 33795617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationships Among Peripheral and Central Electrophysiological Measures of Spatial and Spectral Selectivity and Speech Perception in Cochlear Implant Users.
    Scheperle RA; Abbas PJ
    Ear Hear; 2015; 36(4):441-53. PubMed ID: 25658746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of spectral shifting on speech perception in noise.
    Li T; Fu QJ
    Hear Res; 2010 Dec; 270(1-2):81-8. PubMed ID: 20868733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a large-item environmental sound test and the effects of short-term training with spectrally-degraded stimuli.
    Shafiro V
    Ear Hear; 2008 Oct; 29(5):775-90. PubMed ID: 18596641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A model of incomplete adaptation to a severely shifted frequency-to-electrode mapping by cochlear implant users.
    Sagi E; Fu QJ; Galvin JJ; Svirsky MA
    J Assoc Res Otolaryngol; 2010 Mar; 11(1):69-78. PubMed ID: 19774412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Perceptual adaptation of vowels generalizes across the phonology and does not require local context.
    Chládková K; Podlipský VJ; Chionidou A
    J Exp Psychol Hum Percept Perform; 2017 Feb; 43(2):414-427. PubMed ID: 27893274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noise susceptibility of cochlear implant users: the role of spectral resolution and smearing.
    Fu QJ; Nogaki G
    J Assoc Res Otolaryngol; 2005 Mar; 6(1):19-27. PubMed ID: 15735937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Perceptual learning and auditory training in cochlear implant recipients.
    Fu QJ; Galvin JJ
    Trends Amplif; 2007 Sep; 11(3):193-205. PubMed ID: 17709574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Perceptual adaptation of voice gender discrimination with spectrally shifted vowels.
    Li T; Fu QJ
    J Speech Lang Hear Res; 2011 Aug; 54(4):1240-5. PubMed ID: 21173392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.