BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 17131298)

  • 1. Effect of salts on the structural behavior of hPrP alpha2-helix-derived analogues: the counterion perspective.
    Ronga L; Palladino P; Tizzano B; Marasco D; Benedetti E; Ragone R; Rossi F
    J Pept Sci; 2006 Dec; 12(12):790-5. PubMed ID: 17131298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural characterization of a neurotoxic threonine-rich peptide corresponding to the human prion protein alpha 2-helical 180-195 segment, and comparison with full-length alpha 2-helix-derived peptides.
    Ronga L; Palladino P; Saviano G; Tancredi T; Benedetti E; Ragone R; Rossi F
    J Pept Sci; 2008 Oct; 14(10):1096-102. PubMed ID: 18563793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Critical balance of electrostatic and hydrophobic interactions is required for beta 2-microglobulin amyloid fibril growth and stability.
    Raman B; Chatani E; Kihara M; Ban T; Sakai M; Hasegawa K; Naiki H; Rao ChM; Goto Y
    Biochemistry; 2005 Feb; 44(4):1288-99. PubMed ID: 15667222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A thermodynamic approach to the conformational preferences of the 180-195 segment derived from the human prion protein alpha2-helix.
    Ronga L; Palladino P; Ragone R; Benedetti E; Rossi F
    J Pept Sci; 2009 Jan; 15(1):30-5. PubMed ID: 19035579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Salt effects on hydrophobic interaction and charge screening in the folding of a negatively charged peptide to a coiled coil (leucine zipper).
    Jelesarov I; Dürr E; Thomas RM; Bosshard HR
    Biochemistry; 1998 May; 37(20):7539-50. PubMed ID: 9585569
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A de novo designed helix-turn-helix peptide forms nontoxic amyloid fibrils.
    Fezoui Y; Hartley DM; Walsh DM; Selkoe DJ; Osterhout JJ; Teplow DB
    Nat Struct Biol; 2000 Dec; 7(12):1095-9. PubMed ID: 11101888
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [A turning point in the knowledge of the structure-function-activity relations of elastin].
    Alix AJ
    J Soc Biol; 2001; 195(2):181-93. PubMed ID: 11727705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intramolecular charge interactions as a tool to control the coiled-coil-to-amyloid transformation.
    Pagel K; Wagner SC; Rezaei Araghi R; von Berlepsch H; Böttcher C; Koksch B
    Chemistry; 2008; 14(36):11442-51. PubMed ID: 19016556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Does tetracycline bind helix 2 of prion? An integrated spectroscopical and computational study of the interaction between the antibiotic and alpha helix 2 human prion protein fragments.
    Ronga L; Langella E; Palladino P; Marasco D; Tizzano B; Saviano M; Pedone C; Improta R; Ruvo M
    Proteins; 2007 Feb; 66(3):707-15. PubMed ID: 17152078
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unusual property of prion protein unfolding in neutral salt solution.
    Nandi PK; Leclerc E; Marc D
    Biochemistry; 2002 Sep; 41(36):11017-24. PubMed ID: 12206674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ion-channel formation assisted by electrostatic interhelical interactions in covalently dimerized amphiphilic helical peptides.
    Taira J; Jelokhani-Niaraki M; Osada S; Kato F; Kodama H
    Biochemistry; 2008 Mar; 47(12):3705-14. PubMed ID: 18302338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A phosphoserine-lysine salt bridge within an alpha-helical peptide, the strongest alpha-helix side-chain interaction measured to date.
    Errington N; Doig AJ
    Biochemistry; 2005 May; 44(20):7553-8. PubMed ID: 15895998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global topology & stability and local structure & dynamics in a synthetic spin-labeled four-helix bundle protein.
    Gibney BR; Johansson JS; Rabanal F; Skalicky JJ; Wand AJ; Dutton PL
    Biochemistry; 1997 Mar; 36(10):2798-806. PubMed ID: 9062107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anion effect on the nanostructure of a metal ion binding self-assembling peptide.
    Yang H; Pritzker M; Fung SY; Sheng Y; Wang W; Chen P
    Langmuir; 2006 Sep; 22(20):8553-62. PubMed ID: 16981775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amyloid architecture: complementary assembly of heterogeneous combinations of three or four peptides into amyloid fibrils.
    Takahashi Y; Ueno A; Mihara H
    Chembiochem; 2002 Jul; 3(7):637-42. PubMed ID: 12324997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrostatics in the stability and misfolding of the prion protein: salt bridges, self energy, and solvation.
    Guest WC; Cashman NR; Plotkin SS
    Biochem Cell Biol; 2010 Apr; 88(2):371-81. PubMed ID: 20453937
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membrane interactions and conformational preferences of human and avian prion N-terminal tandem repeats: the role of copper(II) ions, pH, and membrane mimicking environments.
    Di Natale G; Pappalardo G; Milardi D; Sciacca MF; Attanasio F; La Mendola D; Rizzarelli E
    J Phys Chem B; 2010 Nov; 114(43):13830-8. PubMed ID: 20936829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A doppel alpha-helix peptide fragment mimics the copper(II) interactions with the whole protein.
    La Mendola D; Magrì A; Campagna T; Campitiello MA; Raiola L; Isernia C; Hansson O; Bonomo RP; Rizzarelli E
    Chemistry; 2010 Jun; 16(21):6212-23. PubMed ID: 20411530
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stabilization of helical peptides by mixed spaced salt bridges.
    Berger JS; Ernst JA; Nicoletta AC; Hull LA; Yang J; Qiu R; Morozov VN; Kallenbach NR
    J Biomol Struct Dyn; 1996 Dec; 14(3):285-91. PubMed ID: 9016406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of hydrophobic interactions in amyloidogenesis: example of prion-related polypeptides.
    Tcherkasskaya O; Sanders W; Chynwat V; Davidson EA; Orser CS
    J Biomol Struct Dyn; 2003 Dec; 21(3):353-65. PubMed ID: 14616031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.