BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 17131416)

  • 1. Developmental abnormalities in the nerves of peripheral myelin protein 22-deficient mice.
    Amici SA; Dunn WA; Notterpek L
    J Neurosci Res; 2007 Feb; 85(2):238-49. PubMed ID: 17131416
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peripheral myelin protein 22 is in complex with alpha6beta4 integrin, and its absence alters the Schwann cell basal lamina.
    Amici SA; Dunn WA; Murphy AJ; Adams NC; Gale NW; Valenzuela DM; Yancopoulos GD; Notterpek L
    J Neurosci; 2006 Jan; 26(4):1179-89. PubMed ID: 16436605
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of Schwann cell myelin formation by K252a in the Trembler-J mouse dorsal root ganglion explant culture.
    Liu N; Varma S; Shooter EM; Tolwani RJ
    J Neurosci Res; 2005 Feb; 79(3):310-7. PubMed ID: 15605381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of the regulatory region of the peripheral myelin protein 22 (PMP22) gene that directs temporal and spatial expression in development and regeneration of peripheral nerves.
    Maier M; Berger P; Nave KA; Suter U
    Mol Cell Neurosci; 2002 May; 20(1):93-109. PubMed ID: 12056842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The alpha-chemokine CXCL14 is up-regulated in the sciatic nerve of a mouse model of Charcot-Marie-Tooth disease type 1A and alters myelin gene expression in cultured Schwann cells.
    Barbaria EM; Kohl B; Buhren BA; Hasenpusch-Theil K; Kruse F; Küry P; Martini R; Müller HW
    Neurobiol Dis; 2009 Mar; 33(3):448-58. PubMed ID: 19111616
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temporal expression pattern of peripheral myelin protein 22 during in vivo and in vitro myelination.
    Notterpek L; Snipes GJ; Shooter EM
    Glia; 1999 Feb; 25(4):358-69. PubMed ID: 10028918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Localization and functional roles of PMP22 in peripheral nerves of P0-deficient mice.
    Carenini S; Neuberg D; Schachner M; Suter U; Martini R
    Glia; 1999 Dec; 28(3):256-64. PubMed ID: 10559784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Many facets of the peripheral myelin protein PMP22 in myelination and disease.
    Naef R; Suter U
    Microsc Res Tech; 1998 Jun; 41(5):359-71. PubMed ID: 9672419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinct disease mechanisms in peripheral neuropathies due to altered peripheral myelin protein 22 gene dosage or a Pmp22 point mutation.
    Giambonini-Brugnoli G; Buchstaller J; Sommer L; Suter U; Mantei N
    Neurobiol Dis; 2005 Apr; 18(3):656-68. PubMed ID: 15755691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dichloroacetate causes reversible demyelination in vitro: potential mechanism for its neuropathic effect.
    Felitsyn N; Stacpoole PW; Notterpek L
    J Neurochem; 2007 Jan; 100(2):429-36. PubMed ID: 17241159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hypermyelination and demyelinating peripheral neuropathy in Pmp22-deficient mice.
    Adlkofer K; Martini R; Aguzzi A; Zielasek J; Toyka KV; Suter U
    Nat Genet; 1995 Nov; 11(3):274-80. PubMed ID: 7581450
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nerve conduction abnormalities and neuromyotonia in genetically engineered mouse models of human hereditary neuropathies.
    Zielasek J; Toyka KV
    Ann N Y Acad Sci; 1999 Sep; 883():310-20. PubMed ID: 10586256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The temporospatial expression of peripheral myelin protein 22 at the developing blood-nerve and blood-brain barriers.
    Roux KJ; Amici SA; Notterpek L
    J Comp Neurol; 2004 Jul; 474(4):578-88. PubMed ID: 15174074
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular alterations resulting from frameshift mutations in peripheral myelin protein 22: implications for neuropathy severity.
    Johnson JS; Roux KJ; Fletcher BS; Fortun J; Notterpek L
    J Neurosci Res; 2005 Dec; 82(6):743-52. PubMed ID: 16273544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of peripheral myelination by Src-like kinases.
    Hossain S; Fragoso G; Mushynski WE; Almazan G
    Exp Neurol; 2010 Nov; 226(1):47-57. PubMed ID: 20696161
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impaired proteasome activity and accumulation of ubiquitinated substrates in a hereditary neuropathy model.
    Fortun J; Li J; Go J; Fenstermaker A; Fletcher BS; Notterpek L
    J Neurochem; 2005 Mar; 92(6):1531-41. PubMed ID: 15748170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential expression of two mRNA species indicates a dual function of peripheral myelin protein PMP22 in cell growth and myelination.
    Bosse F; Zoidl G; Wilms S; Gillen CP; Kuhn HG; Müller HW
    J Neurosci Res; 1994 Mar; 37(4):529-37. PubMed ID: 8021974
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neurotrophins are key mediators of the myelination program in the peripheral nervous system.
    Chan JR; Cosgaya JM; Wu YJ; Shooter EM
    Proc Natl Acad Sci U S A; 2001 Dec; 98(25):14661-8. PubMed ID: 11717413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular bases of myelin formation as revealed by investigations on mice deficient in glial cell surface molecules.
    Martini R; Schachner M
    Glia; 1997 Apr; 19(4):298-310. PubMed ID: 9097074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. IGF-1 stimulates de novo fatty acid biosynthesis by Schwann cells during myelination.
    Liang G; Cline GW; Macica CM
    Glia; 2007 Apr; 55(6):632-41. PubMed ID: 17299765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.