These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

442 related articles for article (PubMed ID: 17131657)

  • 1. A fast and accurate online sequential learning algorithm for feedforward networks.
    Liang NY; Huang GB; Saratchandran P; Sundararajan N
    IEEE Trans Neural Netw; 2006 Nov; 17(6):1411-23. PubMed ID: 17131657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Online sequential fuzzy extreme learning machine for function approximation and classification problems.
    Rong HJ; Huang GB; Sundararajan N; Saratchandran P
    IEEE Trans Syst Man Cybern B Cybern; 2009 Aug; 39(4):1067-72. PubMed ID: 19336333
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An improvement of extreme learning machine for compact single-hidden-layer feedforward neural networks.
    Huynh HT; Won Y; Kim JJ
    Int J Neural Syst; 2008 Oct; 18(5):433-41. PubMed ID: 18991365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Universal approximation of extreme learning machine with adaptive growth of hidden nodes.
    Zhang R; Lan Y; Huang GB; Xu ZB
    IEEE Trans Neural Netw Learn Syst; 2012 Feb; 23(2):365-71. PubMed ID: 24808516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Error minimized extreme learning machine with growth of hidden nodes and incremental learning.
    Feng G; Huang GB; Lin Q; Gay R
    IEEE Trans Neural Netw; 2009 Aug; 20(8):1352-7. PubMed ID: 19596632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bidirectional extreme learning machine for regression problem and its learning effectiveness.
    Yang Y; Wang Y; Yuan X
    IEEE Trans Neural Netw Learn Syst; 2012 Sep; 23(9):1498-505. PubMed ID: 24807932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic extreme learning machine and its approximation capability.
    Zhang R; Lan Y; Huang GB; Xu ZB; Soh YC
    IEEE Trans Cybern; 2013 Dec; 43(6):2054-65. PubMed ID: 23757515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generalized single-hidden layer feedforward networks for regression problems.
    Wang N; Er MJ; Han M
    IEEE Trans Neural Netw Learn Syst; 2015 Jun; 26(6):1161-76. PubMed ID: 25051564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Universal approximation using incremental constructive feedforward networks with random hidden nodes.
    Huang GB; Chen L; Siew CK
    IEEE Trans Neural Netw; 2006 Jul; 17(4):879-892. PubMed ID: 16856652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parameter incremental learning algorithm for neural networks.
    Wan S; Banta LE
    IEEE Trans Neural Netw; 2006 Nov; 17(6):1424-38. PubMed ID: 17131658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel multiple instance learning method based on extreme learning machine.
    Wang J; Cai L; Peng J; Jia Y
    Comput Intell Neurosci; 2015; 2015():405890. PubMed ID: 25705220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving Classification Performance through an Advanced Ensemble Based Heterogeneous Extreme Learning Machines.
    Abuassba AOM; Zhang D; Luo X; Shaheryar A; Ali H
    Comput Intell Neurosci; 2017; 2017():3405463. PubMed ID: 28546808
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive control of nonlinear system using online error minimum neural networks.
    Jia C; Li X; Wang K; Ding D
    ISA Trans; 2016 Nov; 65():125-132. PubMed ID: 27522102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new adaptive backpropagation algorithm based on Lyapunov stability theory for neural networks.
    Man Z; Wu HR; Liu S; Yu X
    IEEE Trans Neural Netw; 2006 Nov; 17(6):1580-91. PubMed ID: 17131670
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A hybrid forward algorithm for RBF neural network construction.
    Peng JX; Li K; Huang DS
    IEEE Trans Neural Netw; 2006 Nov; 17(6):1439-51. PubMed ID: 17131659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimating the number of hidden neurons in a feedforward network using the singular value decomposition.
    Teoh EJ; Tan KC; Xiang C
    IEEE Trans Neural Netw; 2006 Nov; 17(6):1623-9. PubMed ID: 17131674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptive Online Sequential ELM for Concept Drift Tackling.
    Budiman A; Fanany MI; Basaruddin C
    Comput Intell Neurosci; 2016; 2016():8091267. PubMed ID: 27594879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Higher-order-statistics-based radial basis function networks for signal enhancement.
    Lin BS; Lin BS; Chong FC; Lai F
    IEEE Trans Neural Netw; 2007 May; 18(3):823-32. PubMed ID: 17526347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Data classification with radial basis function networks based on a novel kernel density estimation algorithm.
    Oyang YJ; Hwang SC; Ou YY; Chen CY; Chen ZW
    IEEE Trans Neural Netw; 2005 Jan; 16(1):225-36. PubMed ID: 15732402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic adjustment of hidden node parameters for extreme learning machine.
    Feng G; Lan Y; Zhang X; Qian Z
    IEEE Trans Cybern; 2015 Feb; 45(2):279-88. PubMed ID: 24919208
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.