These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 17132530)

  • 1. Density-based load estimation using two-dimensional finite element models: a parametric study.
    Bona MA; Martin LD; Fischer KJ
    Comput Methods Biomech Biomed Engin; 2006 Aug; 9(4):221-9. PubMed ID: 17132530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A contact algorithm for density-based load estimation.
    Bona MA; Martin LD; Fischer KJ
    J Biomech; 2006; 39(4):636-44. PubMed ID: 16439233
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Finite Element Analysis (FEA) for the structure capacity of proximal femur during falling--(II). The effects of falling configuration and load locations on the structural capacity of the proximal femur].
    Fan L; Wang E
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Dec; 23(6):1245-9. PubMed ID: 17228718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Bone remodeling numerical simulation on the basis of bone adaptive theory].
    Chen B; Zhao W; Sun Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Apr; 25(2):363-7. PubMed ID: 18610623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diametral compression of non-circular diaphyseal bone sections.
    Womack WJ; Santoni BG; Puttlitz CM
    J Biomech; 2008; 41(1):194-9. PubMed ID: 17706657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subject-specific finite element models of long bones: An in vitro evaluation of the overall accuracy.
    Taddei F; Cristofolini L; Martelli S; Gill HS; Viceconti M
    J Biomech; 2006; 39(13):2457-67. PubMed ID: 16213507
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bone Load Estimation for the Proximal Femur Using Single Energy Quantitative CT Data.
    Fischer KJ; Jacobs CR; Levenston ME; Cody DD; Carter DR
    Comput Methods Biomech Biomed Engin; 1998; 1(3):233-245. PubMed ID: 11264806
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Finite element analysis (FEA) for the structure capacity of proximal femur during falling--(I) FEA model and the failure criteria for the bone].
    Fan L; Wang E
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Oct; 23(5):1028-32. PubMed ID: 17121347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stress analysis of the interface between cervical vertebrae end plates and the Bryan, Prestige LP, and ProDisc-C cervical disc prostheses: an in vivo image-based finite element study.
    Lin CY; Kang H; Rouleau JP; Hollister SJ; Marca FL
    Spine (Phila Pa 1976); 2009 Jul; 34(15):1554-60. PubMed ID: 19564765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional finite element model of the cervical spinal cord: preliminary results of injury mechanism analysis.
    Li XF; Dai LY
    Spine (Phila Pa 1976); 2009 May; 34(11):1140-7. PubMed ID: 19444060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Mathematical simulation of stem/cement/bone mechanical interactions for Poldi-Cech, CF-30, MS-30 and PFC femoral components].
    Kovanda M; HavlĂ­cek V; Hudec J
    Acta Chir Orthop Traumatol Cech; 2009 Apr; 76(2):110-5. PubMed ID: 19439130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stability of locking and conventional 2.0-mm miniplate/screw systems after sagittal split ramus osteotomy: finite element analysis.
    Oguz Y; Uckan S; Ozden AU; Uckan E; Eser A
    Oral Surg Oral Med Oral Pathol Oral Radiol Endod; 2009 Aug; 108(2):174-7. PubMed ID: 19615655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical alterations in intact osteoporotic spine due to synthetic augmentation: finite element investigation.
    Higgins KB; Sindall DR; Cuitino AM; Langrana NA
    J Biomech Eng; 2007 Aug; 129(4):575-85. PubMed ID: 17655479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs.
    Papini M; Zdero R; Schemitsch EH; Zalzal P
    J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of implant diameter and length on stress distribution of osseointegrated implants related to crestal bone geometry: a three-dimensional finite element analysis.
    Baggi L; Cappelloni I; Di Girolamo M; Maceri F; Vairo G
    J Prosthet Dent; 2008 Dec; 100(6):422-31. PubMed ID: 19033026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [3D finite element analysis of bone stress around distally osseointegrated implant for artificial limb attachment].
    Zheng L; Luo J; Wang X; Chen J; Gu Z; Zhang X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Jun; 24(3):554-7. PubMed ID: 17713260
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computer simulation of trabecular remodeling in human proximal femur using large-scale voxel FE models: Approach to understanding Wolff's law.
    Tsubota K; Suzuki Y; Yamada T; Hojo M; Makinouchi A; Adachi T
    J Biomech; 2009 May; 42(8):1088-94. PubMed ID: 19403138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A B-spline based heterogeneous modeling and analysis of proximal femur with graded element.
    Pise UV; Bhatt AD; Srivastava RK; Warkedkar R
    J Biomech; 2009 Aug; 42(12):1981-8. PubMed ID: 19541316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Wolff's law-based continuum topology optimization method and its application in biomechanics].
    Cai K; Zhang H; Luo Y; Chen B
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Apr; 25(2):331-5. PubMed ID: 18610617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A topology optimization based model of bone adaptation.
    Rossi JM; Wendling-Mansuy S
    Comput Methods Biomech Biomed Engin; 2007 Dec; 10(6):419-27. PubMed ID: 17896214
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.