These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 17132661)
1. DNA-repair protein distribution along the tracks of energetic ions. Hauptner A; Krücken R; Greubel C; Hable V; Dollinger G; Drexler GA; Deutsch M; Löwe R; Friedl AA; Dietzel S; Strickfaden H; Cremer T Radiat Prot Dosimetry; 2006; 122(1-4):147-9. PubMed ID: 17132661 [TBL] [Abstract][Full Text] [Related]
2. Role of DNA/chromatin organisation and scavenging capacity in USX- and proton- induced DNA damage. Alloni D; Ballarini F; Friedland W; Liotta M; Molinelli S; Ottolenghi A; Paretzke HG; Rossetti M Radiat Prot Dosimetry; 2006; 122(1-4):141-6. PubMed ID: 17284477 [TBL] [Abstract][Full Text] [Related]
3. Chromatin loops are responsible for higher counts of small DNA fragments induced by high-LET radiation, while chromosomal domains do not affect the fragment sizes. Ponomarev AL; Cucinotta FA Int J Radiat Biol; 2006 Apr; 82(4):293-305. PubMed ID: 16690597 [TBL] [Abstract][Full Text] [Related]
4. Simulation of light ion induced DNA damage patterns. Friedland W; Jacob P; Paretzke HG; Ottolenghi A; Ballarini F; Liotta M Radiat Prot Dosimetry; 2006; 122(1-4):116-20. PubMed ID: 17166872 [TBL] [Abstract][Full Text] [Related]
5. Computer evaluation of direct and indirect damage induced by free and DNA-bound iodine-125 in the chromatin fibre. Terrissol M; Edel S; Pomplun E Int J Radiat Biol; 2004; 80(11-12):905-8. PubMed ID: 15764400 [TBL] [Abstract][Full Text] [Related]
6. The difference in LET and ion species dependence for induction of initially measured and non-rejoined chromatin breaks in normal human fibroblasts. Tsuruoka C; Suzuki M; Hande MP; Furusawa Y; Anzai K; Okayasu R Radiat Res; 2008 Aug; 170(2):163-71. PubMed ID: 18666815 [TBL] [Abstract][Full Text] [Related]
7. Stochastic properties of radiation-induced DSB: DSB distributions in large scale chromatin loops, the HPRT gene and within the visible volumes of DNA repair foci. Ponomarev AL; Costes SV; Cucinotta FA Int J Radiat Biol; 2008 Nov; 84(11):916-29. PubMed ID: 19016140 [TBL] [Abstract][Full Text] [Related]
8. Molecular basic data calculation for radiation transport in chromatin. Peudon A; Edel S; Terrissol M Radiat Prot Dosimetry; 2006; 122(1-4):128-35. PubMed ID: 17166876 [TBL] [Abstract][Full Text] [Related]
9. Detailed analysis of the response of different cell lines to carbon irradiation. Hromcíková H; Kundrát P; Lokajícek M Radiat Prot Dosimetry; 2006; 122(1-4):121-3. PubMed ID: 17213222 [TBL] [Abstract][Full Text] [Related]
10. Modification of DNA radiolysis by DNA-binding proteins: structural aspects. Davídková M; Stísová V; Goffinont S; Gillard N; Castaing B; Spotheim-Maurizot M Radiat Prot Dosimetry; 2006; 122(1-4):100-5. PubMed ID: 17229781 [TBL] [Abstract][Full Text] [Related]
11. Cellular signal transduction events as a function of linear energy transfer (LET). Fürweger C; Hajek M; Vana N; Kodym R; Okayasu R Radiat Prot Dosimetry; 2007; 126(1-4):418-22. PubMed ID: 17576650 [TBL] [Abstract][Full Text] [Related]
12. Live cell imaging of heavy-ion-induced radiation responses by beamline microscopy. Jakob B; Rudolph JH; Gueven N; Lavin MF; Taucher-Scholz G Radiat Res; 2005 Jun; 163(6):681-90. PubMed ID: 15913400 [TBL] [Abstract][Full Text] [Related]
13. Charge transfer and ionisation by intermediate-energy heavy ions. Toburen LH; McLawhorn SL; McLawhorn RA; Evans NL; Justiniano EL; Shinpaugh JL; Schultz DR; Reinhold CO Radiat Prot Dosimetry; 2006; 122(1-4):22-5. PubMed ID: 17132666 [TBL] [Abstract][Full Text] [Related]
14. Difference in the induction, but not in the repair, of X-ray- and nitrogen ion-induced DNA single-strand breaks as measured using human cell extracts. Polischouk AG; StenerlOw B; Edgren MR; Lewensohn R Int J Radiat Biol; 2003 Dec; 79(12):965-71. PubMed ID: 14713574 [TBL] [Abstract][Full Text] [Related]
15. Radiation damage to DNA-protein specific complexes: estrogen response element-estrogen receptor complex. Stísová V; Goffinont S; Spotheim-Maurizot M; Davídková M Radiat Prot Dosimetry; 2006; 122(1-4):106-9. PubMed ID: 17229785 [TBL] [Abstract][Full Text] [Related]
16. The application of amorphous track models to study cell survival in heavy ions beams. Grzanka L; Greilich S; Korcyl M; Jäkel O; Waligórski M; Olko P Radiat Prot Dosimetry; 2011 Feb; 143(2-4):232-6. PubMed ID: 21233095 [TBL] [Abstract][Full Text] [Related]
17. DNA fragmentation induced in human fibroblasts by accelerated (56)fe ions of differing energies. Belli M; Campa A; Dini V; Esposito G; Furusawa Y; Simone G; Sorrentino E; Tabocchini MA Radiat Res; 2006 Jun; 165(6):713-20. PubMed ID: 16802872 [TBL] [Abstract][Full Text] [Related]
18. Chromatin organization contributes to non-randomly distributed double-strand breaks after exposure to high-LET radiation. Radulescu I; Elmroth K; Stenerlöw B Radiat Res; 2004 Jan; 161(1):1-8. PubMed ID: 14680402 [TBL] [Abstract][Full Text] [Related]
19. Novel apparatus to measure hyperthermal heavy ion damage to DNA: strand breaks, base loss, and fragmentation. Sellami L; Lacombe S; Hunting D; Wagner RJ; Huels MA Rev Sci Instrum; 2007 Aug; 78(8):085111. PubMed ID: 17764359 [TBL] [Abstract][Full Text] [Related]
20. Monte Carlo simulation of the production of short DNA fragments by low-linear energy transfer radiation using higher-order DNA models. Friedland W; Jacob P; Paretzke HG; Stork T Radiat Res; 1998 Aug; 150(2):170-82. PubMed ID: 9692362 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]