These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 17132688)
1. Modulating the folding of P-glycoprotein and cystic fibrosis transmembrane conductance regulator truncation mutants with pharmacological chaperones. Wang Y; Loo TW; Bartlett MC; Clarke DM Mol Pharmacol; 2007 Mar; 71(3):751-8. PubMed ID: 17132688 [TBL] [Abstract][Full Text] [Related]
2. Specific rescue of cystic fibrosis transmembrane conductance regulator processing mutants using pharmacological chaperones. Wang Y; Bartlett MC; Loo TW; Clarke DM Mol Pharmacol; 2006 Jul; 70(1):297-302. PubMed ID: 16624886 [TBL] [Abstract][Full Text] [Related]
3. Domain interdependence in the biosynthetic assembly of CFTR. Cui L; Aleksandrov L; Chang XB; Hou YX; He L; Hegedus T; Gentzsch M; Aleksandrov A; Balch WE; Riordan JR J Mol Biol; 2007 Jan; 365(4):981-94. PubMed ID: 17113596 [TBL] [Abstract][Full Text] [Related]
4. Correctors enhance maturation of DeltaF508 CFTR by promoting interactions between the two halves of the molecule. Loo TW; Bartlett MC; Clarke DM Biochemistry; 2009 Oct; 48(41):9882-90. PubMed ID: 19761259 [TBL] [Abstract][Full Text] [Related]
5. The W232R suppressor mutation promotes maturation of a truncation mutant lacking both nucleotide-binding domains and restores interdomain assembly and activity of P-glycoprotein processing mutants. Loo TW; Bartlett MC; Clarke DM Biochemistry; 2011 Feb; 50(5):672-85. PubMed ID: 21182301 [TBL] [Abstract][Full Text] [Related]
6. Deletion of Phe508 in the first nucleotide-binding domain of the cystic fibrosis transmembrane conductance regulator increases its affinity for the heat shock cognate 70 chaperone. Scott-Ward TS; Amaral MD FEBS J; 2009 Dec; 276(23):7097-109. PubMed ID: 19878303 [TBL] [Abstract][Full Text] [Related]
7. The human DnaJ homologue (Hdj)-1/heat-shock protein (Hsp) 40 co-chaperone is required for the in vivo stabilization of the cystic fibrosis transmembrane conductance regulator by Hsp70. Farinha CM; Nogueira P; Mendes F; Penque D; Amaral MD Biochem J; 2002 Sep; 366(Pt 3):797-806. PubMed ID: 12069690 [TBL] [Abstract][Full Text] [Related]
8. Correctors promote folding of the CFTR in the endoplasmic reticulum. Loo TW; Bartlett MC; Clarke DM Biochem J; 2008 Jul; 413(1):29-36. PubMed ID: 18361776 [TBL] [Abstract][Full Text] [Related]
9. Rescue of DeltaF508 and other misprocessed CFTR mutants by a novel quinazoline compound. Loo TW; Bartlett MC; Clarke DM Mol Pharm; 2005; 2(5):407-13. PubMed ID: 16196493 [TBL] [Abstract][Full Text] [Related]
10. A monoclonal antibody prevents aggregation of the NBD1 domain of the cystic fibrosis transmembrane conductance regulator. Lovato V; Roesli C; Ahlskog J; Scheuermann J; Neri D Protein Eng Des Sel; 2007 Dec; 20(12):607-14. PubMed ID: 18055505 [TBL] [Abstract][Full Text] [Related]
11. The DeltaF508 cystic fibrosis mutation impairs domain-domain interactions and arrests post-translational folding of CFTR. Du K; Sharma M; Lukacs GL Nat Struct Mol Biol; 2005 Jan; 12(1):17-25. PubMed ID: 15619635 [TBL] [Abstract][Full Text] [Related]
12. Protein kinase A regulates ATP hydrolysis and dimerization by a CFTR (cystic fibrosis transmembrane conductance regulator) domain. Howell LD; Borchardt R; Kole J; Kaz AM; Randak C; Cohn JA Biochem J; 2004 Feb; 378(Pt 1):151-9. PubMed ID: 14602047 [TBL] [Abstract][Full Text] [Related]
13. The Walker B motif of the second nucleotide-binding domain (NBD2) of CFTR plays a key role in ATPase activity by the NBD1-NBD2 heterodimer. Stratford FL; Ramjeesingh M; Cheung JC; Huan LJ; Bear CE Biochem J; 2007 Jan; 401(2):581-6. PubMed ID: 16989640 [TBL] [Abstract][Full Text] [Related]
14. Repair of CFTR folding defects with correctors that function as pharmacological chaperones. Loo TW; Clarke DM Methods Mol Biol; 2011; 741():23-37. PubMed ID: 21594776 [TBL] [Abstract][Full Text] [Related]
15. Topogenesis of cystic fibrosis transmembrane conductance regulator (CFTR): regulation by the amino terminal transmembrane sequences. Chen M; Zhang JT Biochemistry; 1999 Apr; 38(17):5471-7. PubMed ID: 10220334 [TBL] [Abstract][Full Text] [Related]
16. Corrector-mediated rescue of misprocessed CFTR mutants can be reduced by the P-glycoprotein drug pump. Loo TW; Bartlett MC; Shi L; Clarke DM Biochem Pharmacol; 2012 Feb; 83(3):345-54. PubMed ID: 22138447 [TBL] [Abstract][Full Text] [Related]
17. A small-molecule modulator interacts directly with deltaPhe508-CFTR to modify its ATPase activity and conformational stability. Wellhauser L; Kim Chiaw P; Pasyk S; Li C; Ramjeesingh M; Bear CE Mol Pharmacol; 2009 Jun; 75(6):1430-8. PubMed ID: 19339490 [TBL] [Abstract][Full Text] [Related]
18. Mg2+ -dependent ATP occlusion at the first nucleotide-binding domain (NBD1) of CFTR does not require the second (NBD2). Aleksandrov L; Aleksandrov A; Riordan JR Biochem J; 2008 Nov; 416(1):129-36. PubMed ID: 18605986 [TBL] [Abstract][Full Text] [Related]
19. Pharmacological induction of CFTR function in patients with cystic fibrosis: mutation-specific therapy. Kerem E Pediatr Pulmonol; 2005 Sep; 40(3):183-96. PubMed ID: 15880796 [TBL] [Abstract][Full Text] [Related]
20. Association of domains within the cystic fibrosis transmembrane conductance regulator. Ostedgaard LS; Rich DP; DeBerg LG; Welsh MJ Biochemistry; 1997 Feb; 36(6):1287-94. PubMed ID: 9063876 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]