BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 17132820)

  • 1. The inositol 1,4,5-trisphosphate receptor (IP3R) and its regulators: sometimes good and sometimes bad teamwork.
    Choe CU; Ehrlich BE
    Sci STKE; 2006 Nov; 2006(363):re15. PubMed ID: 17132820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enrichment of the inositol 1,4,5-trisphosphate receptor/Ca2+ channels in secretory granules and essential roles of chromogranins.
    Yoo SH; Hur YS
    Cell Calcium; 2012; 51(3-4):342-50. PubMed ID: 22222090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of secretory granules in inositol 1,4,5-trisphosphate-dependent Ca(2+) signaling: from phytoplankton to mammals.
    Yoo SH
    Cell Calcium; 2011 Aug; 50(2):175-83. PubMed ID: 21176957
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional coupling of chromogranin with the inositol 1,4,5-trisphosphate receptor shapes calcium signaling.
    Choe CU; Harrison KD; Grant W; Ehrlich BE
    J Biol Chem; 2004 Aug; 279(34):35551-6. PubMed ID: 15194698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subtype-specific and ER lumenal environment-dependent regulation of inositol 1,4,5-trisphosphate receptor type 1 by ERp44.
    Higo T; Hattori M; Nakamura T; Natsume T; Michikawa T; Mikoshiba K
    Cell; 2005 Jan; 120(1):85-98. PubMed ID: 15652484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. IP3 receptor/Ca2+ channel: from discovery to new signaling concepts.
    Mikoshiba K
    J Neurochem; 2007 Sep; 102(5):1426-1446. PubMed ID: 17697045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polycystin-1 and polycystin-2 are both required to amplify inositol-trisphosphate-induced Ca2+ release.
    Mekahli D; Sammels E; Luyten T; Welkenhuyzen K; van den Heuvel LP; Levtchenko EN; Gijsbers R; Bultynck G; Parys JB; De Smedt H; Missiaen L
    Cell Calcium; 2012 Jun; 51(6):452-8. PubMed ID: 22456092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insulin promotes the association of heat shock protein 90 with the inositol 1,4,5-trisphosphate receptor to dampen its Ca2+ release activity.
    Nguyen N; Francoeur N; Chartrand V; Klarskov K; Guillemette G; Boulay G
    Endocrinology; 2009 May; 150(5):2190-6. PubMed ID: 19147678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pharmacology of inositol trisphosphate receptors.
    Bultynck G; Sienaert I; Parys JB; Callewaert G; De Smedt H; Boens N; Dehaen W; Missiaen L
    Pflugers Arch; 2003 Mar; 445(6):629-42. PubMed ID: 12632182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ca(2+) signalling by IP(3) receptors.
    Taylor CW; Prole DL
    Subcell Biochem; 2012; 59():1-34. PubMed ID: 22374086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inositol 1,4,5-trisphosphate IP(3) receptors and their role in neuronal cell function.
    Mikoshiba K
    J Neurochem; 2006 Jun; 97(6):1627-33. PubMed ID: 16805773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuronal calcium sensor-1 promotes immature heart function and hypertrophy by enhancing Ca2+ signals.
    Nakamura TY; Jeromin A; Mikoshiba K; Wakabayashi S
    Circ Res; 2011 Aug; 109(5):512-23. PubMed ID: 21737792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The activation state of the inositol 1,4,5-trisphosphate receptor regulates the velocity of intracellular Ca2+ waves in bovine aortic endothelial cells.
    Béliveau È; Lapointe F; Guillemette G
    J Cell Biochem; 2011 Dec; 112(12):3722-31. PubMed ID: 21815194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Presence of a nucleoplasmic complex composed of the inositol 1,4,5-trisphosphate receptor/Ca2+ channel, chromogranin B, and phospholipids.
    Yoo SH; Nam SW; Huh SK; Park SY; Huh YH
    Biochemistry; 2005 Jun; 44(25):9246-54. PubMed ID: 15966749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inositol 1,4,5-trisphosphate and its receptors.
    Parys JB; De Smedt H
    Adv Exp Med Biol; 2012; 740():255-79. PubMed ID: 22453946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Paclitaxel induces calcium oscillations via an inositol 1,4,5-trisphosphate receptor and neuronal calcium sensor 1-dependent mechanism.
    Boehmerle W; Splittgerber U; Lazarus MB; McKenzie KM; Johnston DG; Austin DJ; Ehrlich BE
    Proc Natl Acad Sci U S A; 2006 Nov; 103(48):18356-61. PubMed ID: 17114292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fertilization and inositol 1,4,5-trisphosphate (IP3)-induced calcium release in type-1 inositol 1,4,5-trisphosphate receptor down-regulated bovine eggs.
    Malcuit C; Knott JG; He C; Wainwright T; Parys JB; Robl JM; Fissore RA
    Biol Reprod; 2005 Jul; 73(1):2-13. PubMed ID: 15744020
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of nuclear chromogranin B in inositol 1,4,5-trisphosphate-mediated nuclear Ca2+ mobilization.
    Huh YH; Chu SY; Park SY; Huh SK; Yoo SH
    Biochemistry; 2006 Jan; 45(4):1212-26. PubMed ID: 16430217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Secretory granules in inositol 1,4,5-trisphosphate-dependent Ca2+ signaling in the cytoplasm of neuroendocrine cells.
    Yoo SH
    FASEB J; 2010 Mar; 24(3):653-64. PubMed ID: 19837865
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The type 2 inositol 1,4,5-trisphosphate receptor, emerging functions for an intriguing Ca²⁺-release channel.
    Vervloessem T; Yule DI; Bultynck G; Parys JB
    Biochim Biophys Acta; 2015 Sep; 1853(9):1992-2005. PubMed ID: 25499268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.