These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 17133450)

  • 1. Influence of the activator in an acrylic bone cement on an array of cement properties.
    Lewis G; Xu J; Deb S; Lasa BV; Román JS
    J Biomed Mater Res A; 2007 Jun; 81(3):544-53. PubMed ID: 17133450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fatigue and fracture toughness of acrylic bone cements modified with long-chain amine activators.
    Deb S; Lewis G; Janna SW; Vazquez B; San Roman J
    J Biomed Mater Res A; 2003 Nov; 67(2):571-7. PubMed ID: 14566799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of strontia on various properties of surgical simplex P acrylic bone cement and experimental variants.
    Lewis G; Xu J; Madigan S; Towler MR
    Acta Biomater; 2007 Nov; 3(6):970-9. PubMed ID: 17512808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relative influence of composition and viscosity of acrylic bone cement on its apparent fracture toughness.
    Lewis G
    Biomed Mater Eng; 2000; 10(1):1-11. PubMed ID: 10950202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of a pre-blended antibiotic (gentamicin sulfate powder) on various mechanical, thermal, and physical properties of three acrylic bone cements.
    Lewis G; Bhattaram A
    J Biomater Appl; 2006 Apr; 20(4):377-408. PubMed ID: 16443619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pore distribution and material properties of bone cement cured at different temperatures.
    Pelletier MH; Lau AC; Smitham PJ; Nielsen G; Walsh WR
    Acta Biomater; 2010 Mar; 6(3):886-91. PubMed ID: 19800995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of new acrylic bone cements prepared with oleic acid derivatives.
    Vázquez B; Deb S; Bonfield W; Román JS
    J Biomed Mater Res; 2002; 63(2):88-97. PubMed ID: 11870640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physical characterization of acrylic bone cement cured with new accelerator systems.
    Tanzi MC; Sket I; Gatti AM; Monari E
    Clin Mater; 1991; 8(1-2):131-6. PubMed ID: 10149162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reinforcement of bone cement using zirconia fibers with and without acrylic coating.
    Kotha S; Li C; Schmid S; Mason J
    J Biomed Mater Res A; 2009 Mar; 88(4):898-906. PubMed ID: 18384160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of long chain amine activator in conventional acrylic bone cement.
    Vazquez B; San Roman J; Deb S; Bonfield W
    J Biomed Mater Res; 1998; 43(2):131-9. PubMed ID: 9619431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of initiation chemistry on the fracture toughness, fatigue strength, and residual monomer content of a novel high-viscosity, two-solution acrylic bone cement.
    Hasenwinkel JM; Lautenschlager EP; Wixson RL; Gilbert JL
    J Biomed Mater Res; 2002 Mar; 59(3):411-21. PubMed ID: 11774298
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of pigmentation on the mechanical and polymerization characteristics of bone cement.
    Liacouras PC; Owen JR; Jiranek WA; Wayne JS
    J Arthroplasty; 2006 Jun; 21(4):606-11. PubMed ID: 16781416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel high-viscosity, two-solution acrylic bone cement: effect of chemical composition on properties.
    Hasenwinkel JM; Lautenschlager EP; Wixson RL; Gilbert JL
    J Biomed Mater Res; 1999 Oct; 47(1):36-45. PubMed ID: 10400878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iron oxide nanoparticles significantly enhances the injectability of apatitic bone cement for vertebroplasty.
    Vlad MD; del Valle LJ; Barracó M; Torres R; López J; Fernández E
    Spine (Phila Pa 1976); 2008 Oct; 33(21):2290-8. PubMed ID: 18827693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic creep behavior of acrylic bone cement.
    Verdonschot N; Huiskes R
    J Biomed Mater Res; 1995 May; 29(5):575-81. PubMed ID: 7622542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of the radiopacifier in an acrylic bone cement on its mechanical, thermal, and physical properties: barium sulfate-containing cement versus iodine-containing cement.
    Lewis G; van Hooy-Corstjens CS; Bhattaram A; Koole LH
    J Biomed Mater Res B Appl Biomater; 2005 Apr; 73(1):77-87. PubMed ID: 15786447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New aspects of the effect of size and size distribution on the setting parameters and mechanical properties of acrylic bone cements.
    Pascual B; Vázquez B; Gurruchaga M; Goñi I; Ginebra MP; Gil FJ; Planell JA; Levenfeld B; San Román J
    Biomaterials; 1996 Mar; 17(5):509-16. PubMed ID: 8991482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of transient and residual stresses during polymerization of bone cement for cemented hip implants.
    Nuño N; Madrala A; Plamondon D
    J Biomech; 2008 Aug; 41(12):2605-11. PubMed ID: 18692188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dependence of curing time, peak temperature, and mechanical properties on the composition of bone cement.
    Brauer GM; Steinberger DR; Stansbury JW
    J Biomed Mater Res; 1986; 20(6):839-52. PubMed ID: 3722218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance of vertebral cancellous bone augmented with compliant PMMA under dynamic loads.
    Boger A; Bohner M; Heini P; Schwieger K; Schneider E
    Acta Biomater; 2008 Nov; 4(6):1688-93. PubMed ID: 18678533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.