These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 1713419)

  • 1. A Ca-activated K channel from rabbit renal brush-border membrane vesicles in planar lipid bilayers.
    Zweifach A; Desir GV; Aronson PS; Giebisch GH
    Am J Physiol; 1991 Jul; 261(1 Pt 2):F187-96. PubMed ID: 1713419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two types of K+ channels in the apical membrane of rabbit proximal tubule in primary culture.
    Merot J; Bidet M; Le Maout S; Tauc M; Poujeol P
    Biochim Biophys Acta; 1989 Jan; 978(1):134-44. PubMed ID: 2563329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple types of voltage-dependent Ca2+-activated K+ channels of large conductance in rat brain synaptosomal membranes.
    Farley J; Rudy B
    Biophys J; 1988 Jun; 53(6):919-34. PubMed ID: 2456105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ca(2+)-activated K+ channels from an insulin-secreting cell line incorporated into planar lipid bilayers.
    Oosawa Y; Ashcroft SJ; Ashcroft FM
    Diabetologia; 1992 Jul; 35(7):619-23. PubMed ID: 1379561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Charybdotoxin block of single Ca2+-activated K+ channels. Effects of channel gating, voltage, and ionic strength.
    Anderson CS; MacKinnon R; Smith C; Miller C
    J Gen Physiol; 1988 Mar; 91(3):317-33. PubMed ID: 2454282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large conducting potassium channel reconstituted from airway smooth muscle.
    Savaria D; Lanoue C; Cadieux A; Rousseau E
    Am J Physiol; 1992 Mar; 262(3 Pt 1):L327-36. PubMed ID: 1372487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconstitution of a calcium-activated potassium channel in basolateral membranes of rabbit colonocytes into planar lipid bilayers.
    Turnheim K; Costantin J; Chan S; Schultz SG
    J Membr Biol; 1989 Dec; 112(3):247-54. PubMed ID: 2614812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mode of action of iberiotoxin, a potent blocker of the large conductance Ca(2+)-activated K+ channel.
    Candia S; Garcia ML; Latorre R
    Biophys J; 1992 Aug; 63(2):583-90. PubMed ID: 1384740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ca2+ activation and pH dependence of a maxi K+ channel from rabbit distal colon epithelium.
    Klaerke DA; Wiener H; Zeuthen T; Jørgensen PL
    J Membr Biol; 1993 Oct; 136(1):9-21. PubMed ID: 7505829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Incorporation into a planar lipid bilayer of K channels from the luminal membrane of rabbit proximal tubule.
    Bellemare F; Morier N; Sauvé R
    Biochim Biophys Acta; 1992 Mar; 1105(1):10-8. PubMed ID: 1567889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toxin pharmacology of the large-conductance Ca(2+)-activated K+ channel in the apical membrane of rabbit proximal convoluted tubule in primary culture.
    Tauc M; Congar P; Poncet V; Merot J; Vita C; Poujeol P
    Pflugers Arch; 1993 Oct; 425(1-2):126-33. PubMed ID: 7505914
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for a K+ channel in bovine chromaffin granule membranes: single-channel properties and possible bioenergetic significance.
    Ashley RH; Brown DM; Apps DK; Phillips JH
    Eur Biophys J; 1994; 23(4):263-75. PubMed ID: 7528657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of Ca-activated K+ channels from renal microvillus membrane vesicles by amiloride analogs.
    Zweifach A; Desir GV; Aronson PS; Giebisch G
    J Membr Biol; 1992 Jun; 128(2):115-22. PubMed ID: 1501239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of charybdotoxin block of the high-conductance, Ca2+-activated K+ channel.
    MacKinnon R; Miller C
    J Gen Physiol; 1988 Mar; 91(3):335-49. PubMed ID: 2454283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transformation of renal tubule epithelial cells by simian virus-40 is associated with emergence of Ca(2+)-insensitive K+ channels and altered mitogenic sensitivity to K+ channel blockers.
    Teulon J; Ronco PM; Geniteau-Legendre M; Baudouin B; Estrade S; Cassingena R; Vandewalle A
    J Cell Physiol; 1992 Apr; 151(1):113-25. PubMed ID: 1373146
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconstitution of an inwardly rectifying potassium channel from the basolateral membranes of Necturus enterocytes into planar lipid bilayers.
    Costantin J; Alcalen S; de Souza Otero A; Dubinsky WP; Schultz SG
    Proc Natl Acad Sci U S A; 1989 Jul; 86(13):5212-6. PubMed ID: 2740353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toxin sensitivity of the calcium-dependent rubidium efflux in Madin-Darby canine kidney cells.
    Tauc M; Gastineau M; Poujeol P
    Biochem Biophys Res Commun; 1993 Jan; 190(2):596-601. PubMed ID: 7678959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Competition for block of a Ca2(+)-activated K+ channel by charybdotoxin and tetraethylammonium.
    Miller C
    Neuron; 1988 Dec; 1(10):1003-6. PubMed ID: 2483092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconstitution of a voltage and calcium dependent potassium channel from rat cerebellum.
    Ottolia M; Babini E; Gazzotti P; Possani LD; Prestipino G
    Brain Res; 1999 Jan; 815(2):410-3. PubMed ID: 9878856
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcium-mediated agonists activate an inwardly rectified K+ channel in colonic secretory cells.
    Devor DC; Frizzell RA
    Am J Physiol; 1993 Nov; 265(5 Pt 1):C1271-80. PubMed ID: 7694492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.