These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
442 related articles for article (PubMed ID: 17134190)
1. Local and network structure of thermoreversible polyrotaxane hydrogels based on poly(ethylene glycol) and methylated alpha-cyclodextrins. Kataoka T; Kidowaki M; Zhao C; Minamikawa H; Shimizu T; Ito K J Phys Chem B; 2006 Dec; 110(48):24377-83. PubMed ID: 17134190 [TBL] [Abstract][Full Text] [Related]
2. Thermoreversible sol-gel transition of an aqueous solution of polyrotaxane composed of highly methylated alpha-cyclodextrin and polyethylene glycol. Kidowaki M; Zhao C; Kataoka T; Ito K Chem Commun (Camb); 2006 Oct; (39):4102-3. PubMed ID: 17024262 [TBL] [Abstract][Full Text] [Related]
3. Rapid binding of concanavalin A and maltose-polyrotaxane conjugates due to mobile motion of alpha-cyclodextrins threaded onto a poly(ethylene glycol). Ooya T; Utsunomiya H; Eguchi M; Yui N Bioconjug Chem; 2005; 16(1):62-9. PubMed ID: 15656576 [TBL] [Abstract][Full Text] [Related]
4. One-pot synthesis of a polyrotaxane via selective threading of a PEI-b-PEG-b-PEI copolymer. Choi HS; Ooya T; Yui N Macromol Biosci; 2006 Jun; 6(6):420-4. PubMed ID: 16761273 [TBL] [Abstract][Full Text] [Related]
5. Thermal properties and microstructures of methylated polyrotaxane solutions. Kataoka T; Kidowaki M; Zhao C; Araki J; Ikehara T; Ito K Curr Drug Discov Technol; 2007 Dec; 4(4):275-81. PubMed ID: 18045089 [TBL] [Abstract][Full Text] [Related]
6. Supramolecular hydrogels based on self-assembly between PEO-PPO-PEO triblock copolymers and alpha-cyclodextrin. Ni X; Cheng A; Li J J Biomed Mater Res A; 2009 Mar; 88(4):1031-6. PubMed ID: 18404710 [TBL] [Abstract][Full Text] [Related]
7. Biodegradable and thermoreversible hydrogels of poly(ethylene glycol)-poly(epsilon-caprolactone-co-glycolide)-poly(ethylene glycol) aqueous solutions. Jiang Z; Hao J; You Y; Liu Y; Wang Z; Deng X J Biomed Mater Res A; 2008 Oct; 87(1):45-51. PubMed ID: 18080306 [TBL] [Abstract][Full Text] [Related]
8. Gelation kinetics and viscoelastic properties of pluronic and α-cyclodextrin-based pseudopolyrotaxane hydrogels. Pradal C; Jack KS; Grøndahl L; Cooper-White JJ Biomacromolecules; 2013 Oct; 14(10):3780-92. PubMed ID: 24001031 [TBL] [Abstract][Full Text] [Related]
9. Supramolecular design for multivalent interaction: maltose mobility along polyrotaxane enhanced binding with concanavalin A. Ooya T; Eguchi M; Yui N J Am Chem Soc; 2003 Oct; 125(43):13016-7. PubMed ID: 14570461 [TBL] [Abstract][Full Text] [Related]
10. Supramolecular hydrogel formation based on inclusion complexation between poly(ethylene glycol)-modified chitosan and alpha-cyclodextrin. Huh KM; Cho YW; Chung H; Kwon IC; Jeong SY; Ooya T; Lee WK; Sasaki S; Yui N Macromol Biosci; 2004 Feb; 4(2):92-9. PubMed ID: 15468199 [TBL] [Abstract][Full Text] [Related]
11. Preparation of alpha-cyclodextrin-terminated polyrotaxane consisting of beta-cyclodextrins and pluronic as a building block of a biodegradable network. Ooya T; Ito A; Yui N Macromol Biosci; 2005 May; 5(5):379-83. PubMed ID: 15895475 [TBL] [Abstract][Full Text] [Related]
12. Branched polyrotaxane hydrogels consisting of alpha-cyclodextrin and low-molecular-weight four-arm polyethylene glycol and the utility of their thixotropic property for controlled drug release. Wang J; Williamson GS; Yang H Colloids Surf B Biointerfaces; 2018 May; 165():144-149. PubMed ID: 29476924 [TBL] [Abstract][Full Text] [Related]
13. Prednisolone-α-cyclodextrin-star PEG polypseudorotaxanes with controlled drug delivery properties. Bílková E; Sedlák M; Dvořák B; Ventura K; Knotek P; Beneš L Org Biomol Chem; 2010 Dec; 8(23):5423-30. PubMed ID: 20859603 [TBL] [Abstract][Full Text] [Related]
14. Injectable drug-delivery systems based on supramolecular hydrogels formed by poly(ethylene oxide)s and alpha-cyclodextrin. Li J; Ni X; Leong KW J Biomed Mater Res A; 2003 May; 65(2):196-202. PubMed ID: 12734812 [TBL] [Abstract][Full Text] [Related]
15. Fabrication of mechanically improved hydrogels using a movable cross-linker based on vinyl modified polyrotaxane. Imran AB; Seki T; Kataoka T; Kidowaki M; Ito K; Takeoka Y Chem Commun (Camb); 2008 Nov; (41):5227-9. PubMed ID: 18956077 [TBL] [Abstract][Full Text] [Related]
16. Hydrolytically degradable polyrotaxane hydrogels for drug and cell delivery applications. Pradal C; Grøndahl L; Cooper-White JJ Biomacromolecules; 2015 Jan; 16(1):389-403. PubMed ID: 25469767 [TBL] [Abstract][Full Text] [Related]
17. Solvent-Free Formation of Cyclodextrin-Based Pseudopolyrotaxanes of Polyethylene Glycol: Kinetic and Structural Aspects. Guembe-Michel N; Durán A; Sirera R; González-Gaitano G Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35054867 [TBL] [Abstract][Full Text] [Related]
18. Novel poly(ethylene glycol) scaffolds crosslinked by hydrolyzable polyrotaxane for cartilage tissue engineering. Lee WK; Ichi T; Ooya T; Yamamoto T; Katoh M; Yui N J Biomed Mater Res A; 2003 Dec; 67(4):1087-92. PubMed ID: 14624493 [TBL] [Abstract][Full Text] [Related]
19. Biocleavable polyrotaxane-plasmid DNA polyplex for enhanced gene delivery. Ooya T; Choi HS; Yamashita A; Yui N; Sugaya Y; Kano A; Maruyama A; Akita H; Ito R; Kogure K; Harashima H J Am Chem Soc; 2006 Mar; 128(12):3852-3. PubMed ID: 16551060 [TBL] [Abstract][Full Text] [Related]