BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 17135286)

  • 1. Protophloem differentiation in early Arabidopsis thaliana development.
    Bauby H; Divol F; Truernit E; Grandjean O; Palauqui JC
    Plant Cell Physiol; 2007 Jan; 48(1):97-109. PubMed ID: 17135286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stage-specific markers define early steps of procambium development in Arabidopsis leaves and correlate termination of vein formation with mesophyll differentiation.
    Scarpella E; Francis P; Berleth T
    Development; 2004 Jul; 131(14):3445-55. PubMed ID: 15226260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene trapping in Arabidopsis reveals genes involved in vascular development.
    Nagawa S; Sawa S; Sato S; Kato T; Tabata S; Fukuda H
    Plant Cell Physiol; 2006 Oct; 47(10):1394-405. PubMed ID: 16980704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tissue-specific GAL4 expression patterns as a resource enabling targeted gene expression, cell type-specific transcript profiling and gene function characterization in the Arabidopsis vascular system.
    Ckurshumova W; Koizumi K; Chatfield SP; Sanchez-Buelna SU; Gangaeva AE; McKenzie R; Berleth T
    Plant Cell Physiol; 2009 Jan; 50(1):141-50. PubMed ID: 19068493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. OCTOPUS, a polarly localised membrane-associated protein, regulates phloem differentiation entry in Arabidopsis thaliana.
    Truernit E; Bauby H; Belcram K; Barthélémy J; Palauqui JC
    Development; 2012 Apr; 139(7):1306-15. PubMed ID: 22395740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of GFP-fusions in Arabidopsis companion cells reveals non-specific protein trafficking into sieve elements and identifies a novel post-phloem domain in roots.
    Stadler R; Wright KM; Lauterbach C; Amon G; Gahrtz M; Feuerstein A; Oparka KJ; Sauer N
    Plant J; 2005 Jan; 41(2):319-31. PubMed ID: 15634207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular genetic framework for protophloem formation.
    Rodriguez-Villalon A; Gujas B; Kang YH; Breda AS; Cattaneo P; Depuydt S; Hardtke CS
    Proc Natl Acad Sci U S A; 2014 Aug; 111(31):11551-6. PubMed ID: 25049386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metaphloem development in the Arabidopsis root tip.
    Graeff M; Hardtke CS
    Development; 2021 Sep; 148(18):. PubMed ID: 34224570
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wiring a plant: genetic networks for phloem formation in Arabidopsis thaliana roots.
    Rodriguez-Villalon A
    New Phytol; 2016 Apr; 210(1):45-50. PubMed ID: 26171671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial and temporal tracing of vessel differentiation in young Arabidopsis seedlings by the expression of an immature tracheary element-specific promoter.
    Pyo H; Demura T; Fukuda H
    Plant Cell Physiol; 2004 Oct; 45(10):1529-36. PubMed ID: 15564536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arabidopsis monomeric G-proteins, markers of early and late events in cell differentiation.
    Bedhomme M; Mathieu C; Pulido A; Henry Y; Bergounioux C
    Int J Dev Biol; 2009; 53(1):177-85. PubMed ID: 19123141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brassinosteroid signaling directs formative cell divisions and protophloem differentiation in Arabidopsis root meristems.
    Kang YH; Breda A; Hardtke CS
    Development; 2017 Jan; 144(2):272-280. PubMed ID: 28096215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TERE; a novel cis-element responsible for a coordinated expression of genes related to programmed cell death and secondary wall formation during differentiation of tracheary elements.
    Pyo H; Demura T; Fukuda H
    Plant J; 2007 Sep; 51(6):955-65. PubMed ID: 17683474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptional regulation of epidermal cell fate in the Arabidopsis embryo.
    Takada S; Jürgens G
    Development; 2007 Mar; 134(6):1141-50. PubMed ID: 17301085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel system for xylem cell differentiation in Arabidopsis thaliana.
    Kondo Y; Fujita T; Sugiyama M; Fukuda H
    Mol Plant; 2015 Apr; 8(4):612-21. PubMed ID: 25624147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of cinnamyl alcohol dehydrogenases and their putative homologues during Arabidopsis thaliana growth and development: lessons for database annotations?
    Kim SJ; Kim KW; Cho MH; Franceschi VR; Davin LB; Lewis NG
    Phytochemistry; 2007 Jul; 68(14):1957-74. PubMed ID: 17467016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temporary expression of the TAF10 gene and its requirement for normal development of Arabidopsis thaliana.
    Tamada Y; Nakamori K; Nakatani H; Matsuda K; Hata S; Furumoto T; Izui K
    Plant Cell Physiol; 2007 Jan; 48(1):134-46. PubMed ID: 17148695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of plant vascular stem cells by endodermis-derived EPFL-family peptide hormones and phloem-expressed ERECTA-family receptor kinases.
    Uchida N; Tasaka M
    J Exp Bot; 2013 Dec; 64(17):5335-43. PubMed ID: 23881395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pattern formation during de novo assembly of the Arabidopsis shoot meristem.
    Gordon SP; Heisler MG; Reddy GV; Ohno C; Das P; Meyerowitz EM
    Development; 2007 Oct; 134(19):3539-48. PubMed ID: 17827180
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pluripotency of Arabidopsis xylem pericycle underlies shoot regeneration from root and hypocotyl explants grown in vitro.
    Atta R; Laurens L; Boucheron-Dubuisson E; Guivarc'h A; Carnero E; Giraudat-Pautot V; Rech P; Chriqui D
    Plant J; 2009 Feb; 57(4):626-44. PubMed ID: 18980654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.