These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 17135414)

  • 1. Steady-state adaptation of mechanotransduction modulates the resting potential of auditory hair cells, providing an assay for endolymph [Ca2+].
    Farris HE; Wells GB; Ricci AJ
    J Neurosci; 2006 Nov; 26(48):12526-36. PubMed ID: 17135414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcium permeation of the turtle hair cell mechanotransducer channel and its relation to the composition of endolymph.
    Ricci AJ; Fettiplace R
    J Physiol; 1998 Jan; 506 ( Pt 1)(Pt 1):159-73. PubMed ID: 9481679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptation Independent Modulation of Auditory Hair Cell Mechanotransduction Channel Open Probability Implicates a Role for the Lipid Bilayer.
    Peng AW; Gnanasambandam R; Sachs F; Ricci AJ
    J Neurosci; 2016 Mar; 36(10):2945-56. PubMed ID: 26961949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The actions of calcium on the mechano-electrical transducer current of turtle hair cells.
    Crawford AC; Evans MG; Fettiplace R
    J Physiol; 1991 Mar; 434():369-98. PubMed ID: 1708822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calcium balance and mechanotransduction in rat cochlear hair cells.
    Beurg M; Nam JH; Chen Q; Fettiplace R
    J Neurophysiol; 2010 Jul; 104(1):18-34. PubMed ID: 20427623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differences in mechano-transducer channel kinetics underlie tonotopic distribution of fast adaptation in auditory hair cells.
    Ricci A
    J Neurophysiol; 2002 Apr; 87(4):1738-48. PubMed ID: 11929895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Voltage-Mediated Control of Spontaneous Bundle Oscillations in Saccular Hair Cells.
    Meenderink SW; Quiñones PM; Bozovic D
    J Neurosci; 2015 Oct; 35(43):14457-66. PubMed ID: 26511238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of caged calcium release on the adaptation of the transduction current in chick hair cells.
    Kimitsuki T; Ohmori H
    J Physiol; 1992 Dec; 458():27-40. PubMed ID: 1284566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The calcium-activated potassium channels of turtle hair cells.
    Art JJ; Wu YC; Fettiplace R
    J Gen Physiol; 1995 Jan; 105(1):49-72. PubMed ID: 7730789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The transduction channel filter in auditory hair cells.
    Ricci AJ; Kennedy HJ; Crawford AC; Fettiplace R
    J Neurosci; 2005 Aug; 25(34):7831-9. PubMed ID: 16120785
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of spontaneous activity in afferent neurons of the zebrafish lateral-line organ.
    Trapani JG; Nicolson T
    J Neurosci; 2011 Feb; 31(5):1614-23. PubMed ID: 21289170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of calcium buffering and cyclic AMP on mechano-electrical transduction in turtle auditory hair cells.
    Ricci AJ; Fettiplace R
    J Physiol; 1997 May; 501 ( Pt 1)(Pt 1):111-24. PubMed ID: 9174998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tonotopic variation in the conductance of the hair cell mechanotransducer channel.
    Ricci AJ; Crawford AC; Fettiplace R
    Neuron; 2003 Dec; 40(5):983-90. PubMed ID: 14659096
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monitoring calcium in turtle hair cells with a calcium-activated potassium channel.
    Tucker TR; Fettiplace R
    J Physiol; 1996 Aug; 494 ( Pt 3)(Pt 3):613-26. PubMed ID: 8865061
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcium entry into stereocilia drives adaptation of the mechanoelectrical transducer current of mammalian cochlear hair cells.
    Corns LF; Johnson SL; Kros CJ; Marcotti W
    Proc Natl Acad Sci U S A; 2014 Oct; 111(41):14918-23. PubMed ID: 25228765
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tonotopic variations of calcium signalling in turtle auditory hair cells.
    Ricci AJ; Gray-Keller M; Fettiplace R
    J Physiol; 2000 Apr; 524 Pt 2(Pt 2):423-36. PubMed ID: 10766923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variation of membrane properties in hair cells isolated from the turtle cochlea.
    Art JJ; Fettiplace R
    J Physiol; 1987 Apr; 385():207-42. PubMed ID: 2443666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Bundle of Mechanisms: Inner-Ear Hair-Cell Mechanotransduction.
    Ó Maoiléidigh D; Ricci AJ
    Trends Neurosci; 2019 Mar; 42(3):221-236. PubMed ID: 30661717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The endogenous calcium buffer and the time course of transducer adaptation in auditory hair cells.
    Ricci AJ; Wu YC; Fettiplace R
    J Neurosci; 1998 Oct; 18(20):8261-77. PubMed ID: 9763471
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of endolymph on the hair cell resting membrane potentials.
    Bracho H; Budelli R
    Otolaryngology; 1978; 86(4 Pt 1):ORL-621. PubMed ID: 112554
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.