BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

340 related articles for article (PubMed ID: 17135569)

  • 1. Genome-wide prediction of conserved and nonconserved enhancers by histone acetylation patterns.
    Roh TY; Wei G; Farrell CM; Zhao K
    Genome Res; 2007 Jan; 17(1):74-81. PubMed ID: 17135569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Active chromatin domains are defined by acetylation islands revealed by genome-wide mapping.
    Roh TY; Cuddapah S; Zhao K
    Genes Dev; 2005 Mar; 19(5):542-52. PubMed ID: 15706033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ChromaSig: a probabilistic approach to finding common chromatin signatures in the human genome.
    Hon G; Ren B; Wang W
    PLoS Comput Biol; 2008 Oct; 4(10):e1000201. PubMed ID: 18927605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative analyses of super-enhancers reveal conserved elements in vertebrate genomes.
    PĂ©rez-Rico YA; Boeva V; Mallory AC; Bitetti A; Majello S; Barillot E; Shkumatava A
    Genome Res; 2017 Feb; 27(2):259-268. PubMed ID: 27965291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome.
    Heintzman ND; Stuart RK; Hon G; Fu Y; Ching CW; Hawkins RD; Barrera LO; Van Calcar S; Qu C; Ching KA; Wang W; Weng Z; Green RD; Crawford GE; Ren B
    Nat Genet; 2007 Mar; 39(3):311-8. PubMed ID: 17277777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide mapping of transcriptional enhancer candidates using DNA and chromatin features in maize.
    Oka R; Zicola J; Weber B; Anderson SN; Hodgman C; Gent JI; Wesselink JJ; Springer NM; Hoefsloot HCJ; Turck F; Stam M
    Genome Biol; 2017 Jul; 18(1):137. PubMed ID: 28732548
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo enhancer analysis of human conserved non-coding sequences.
    Pennacchio LA; Ahituv N; Moses AM; Prabhakar S; Nobrega MA; Shoukry M; Minovitsky S; Dubchak I; Holt A; Lewis KD; Plajzer-Frick I; Akiyama J; De Val S; Afzal V; Black BL; Couronne O; Eisen MB; Visel A; Rubin EM
    Nature; 2006 Nov; 444(7118):499-502. PubMed ID: 17086198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The immunoglobulin heavy-chain gene 3' enhancers deregulate bcl-2 promoter usage in t(14;18) lymphoma cells.
    Duan H; Heckman CA; Boxer LM
    Oncogene; 2007 Apr; 26(18):2635-41. PubMed ID: 17043638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. T-cell specific enhancement of histone H3 acetylation in 5' flanking region of the IL-2 gene.
    Wang L; Kametani Y; Katano I; Habu S
    Biochem Biophys Res Commun; 2005 Jun; 331(2):589-94. PubMed ID: 15850801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The 5' regulatory sequences of active miR-146a promoters are hypomethylated and associated with euchromatic histone modification marks in B lymphoid cells.
    Szenthe K; Koroknai A; Banati F; Bathori Z; Lozsa R; Burgyan J; Wolf H; Salamon D; Nagy K; Niller HH; Minarovits J
    Biochem Biophys Res Commun; 2013 Apr; 433(4):489-95. PubMed ID: 23528241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell-type-specific epigenetic marking of the IL2 gene at a distal cis-regulatory region in competent, nontranscribing T-cells.
    Adachi S; Rothenberg EV
    Nucleic Acids Res; 2005; 33(10):3200-10. PubMed ID: 15937196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Histone H3 globular domain acetylation identifies a new class of enhancers.
    Pradeepa MM; Grimes GR; Kumar Y; Olley G; Taylor GC; Schneider R; Bickmore WA
    Nat Genet; 2016 Jun; 48(6):681-6. PubMed ID: 27089178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genomic analyses of transcription factor binding, histone acetylation, and gene expression reveal mechanistically distinct classes of estrogen-regulated promoters.
    Kininis M; Chen BS; Diehl AG; Isaacs GD; Zhang T; Siepel AC; Clark AG; Kraus WL
    Mol Cell Biol; 2007 Jul; 27(14):5090-104. PubMed ID: 17515612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromatin proteomics reveals novel combinatorial histone modification signatures that mark distinct subpopulations of macrophage enhancers.
    Soldi M; Mari T; Nicosia L; Musiani D; Sigismondo G; Cuomo A; Pavesi G; Bonaldi T
    Nucleic Acids Res; 2017 Dec; 45(21):12195-12213. PubMed ID: 28981749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-resolution profiling of histone methylations in the human genome.
    Barski A; Cuddapah S; Cui K; Roh TY; Schones DE; Wang Z; Wei G; Chepelev I; Zhao K
    Cell; 2007 May; 129(4):823-37. PubMed ID: 17512414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential transcription factor occupancy but evolutionarily conserved chromatin features at the human and mouse M-CSF (CSF-1) receptor loci.
    Follows GA; Tagoh H; Lefevre P; Morgan GJ; Bonifer C
    Nucleic Acids Res; 2003 Oct; 31(20):5805-16. PubMed ID: 14530429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DELTA: A Distal Enhancer Locating Tool Based on AdaBoost Algorithm and Shape Features of Chromatin Modifications.
    Lu Y; Qu W; Shan G; Zhang C
    PLoS One; 2015; 10(6):e0130622. PubMed ID: 26091399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The genomic landscape of histone modifications in human T cells.
    Roh TY; Cuddapah S; Cui K; Zhao K
    Proc Natl Acad Sci U S A; 2006 Oct; 103(43):15782-7. PubMed ID: 17043231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-resolution genome-wide mapping of histone modifications.
    Roh TY; Ngau WC; Cui K; Landsman D; Zhao K
    Nat Biotechnol; 2004 Aug; 22(8):1013-6. PubMed ID: 15235610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comprehensive benchmarking reveals H2BK20 acetylation as a distinctive signature of cell-state-specific enhancers and promoters.
    Kumar V; Rayan NA; Muratani M; Lim S; Elanggovan B; Xin L; Lu T; Makhija H; Poschmann J; Lufkin T; Ng HH; Prabhakar S
    Genome Res; 2016 May; 26(5):612-23. PubMed ID: 26957309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.